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Abstract

Practical and Flexible Equality Saturation

Max Willsey

Chair of the Supervisory Committee:
Luis Ceze

Paul G. Allen School of Computer Science & Engineering

Programming language tools like compilers, optimizers, veri�ers, and synthesizers rely on term

rewriting to e�ectively manipulate programs. While powerful and well-studied, term rewriting

traditionally su�ers from a critical stumbling block: users must choose when and how to apply the

right rewrite, and the quality of the results hinges on this di�cult decision. A recent technique

called equality saturation mitigates this “rewrite choice” issue by allowing many rewrites to apply

simultaneously. Despite its promise, the technique’s applicability has been limited by lack of

�exibility and poor scalability. This thesis o�ers theoretical and practical advances that make

equality saturation fast and �exible enough to use in real-world applications in any domain.

On the theoretical side, this work contributes two techniques to make e-graphs, the data

structure underlying equality saturation, better suited to the algorithm’s needs. A new amortized

invariant restoration technique called rebuilding takes advantage of equality saturation’s distinct

workload, providing asymptotic speedups over current techniques in practice. A general mech-

anism called e-class analyses integrates domain-speci�c analyses into the e-graph, reducing the

need for ad hoc manipulation.

We implemented these techniques in a new open-source library called egg. egg has been used

i



to achieve state-of-the-art results in many domains, including �oating point accuracy, automatic

vectorization, deep learning compute graphs, 3D CAD decompilation, and linear algebra kernels,

among others. We present case studies that highlight how egg’s performance and �exibility helped

these projects succeed, making the case that equality saturation is ready for a wide variety of

real-world use cases.

ii



Contents

1 Introduction 1

1.1 The World Before egg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 The egg Era . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 7

2.1 Term Representation and Rewriting . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 E-Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 De�nitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 E-Graph Invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.3 Interface and Rewriting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Equality Saturation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Rebuilding: A New Take on E-graph Invariant Maintenance 19

3.1 Upward Merging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Rebuilding in Detail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.1 Examples of Rebuilding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.2 Proof of Congruence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Rebuilding and Equality Saturation . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Evaluating Rebuilding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

iii



4 Extending E-graphs with E-class Analyses 33

4.1 E-Class Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1.1 Maintaining the Analysis Invariant . . . . . . . . . . . . . . . . . . . . . . 35

4.1.2 Example: Constant Folding . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Conditional and Dynamic Rewrites . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 egg: Easy, Extensible, and E�cient E-graphs 41

5.1 Ease of Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2 Extensibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.3 E�ciency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6 Case Studies 49

6.1 Szalinski: Decompiling CAD into Structured Programs . . . . . . . . . . . . . . . 50

6.1.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.1.2 Inverse Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.2 Herbie: Improving Floating Point Accuracy . . . . . . . . . . . . . . . . . . . . . . 55

6.2.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.3 Tensat: Optimizing Deep Learning Computation Graphs . . . . . . . . . . . . . . 59

6.3.1 Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.3.2 Exploration Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.3.3 Extraction Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.3.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.4 Ruler: Rewrite Synthesis using Equality Saturation . . . . . . . . . . . . . . . . . 71

6.4.1 Ruler’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.4.2 Choosing Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

iv



6.4.3 Comparison with CVC4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.4.4 Synthesizing Herbie Rewrites . . . . . . . . . . . . . . . . . . . . . . . . . 79

7 Conclusion 83

7.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Bibliography 87

v



vi



Acknowledgments

This thesis covers work done in the �nal year and a half of my PhD. The work done before then,

largely with the Molecular Information Systems Lab at UW, was and is a great source of pride. I

am very fortunate to enjoy the endlessly supportive mentorship of my advisor Luis Ceze, who

is the very �rst person you want on your team, and who introduced me to the collaborative,

cross-disciplinary environment at MISL.

On the egg side of things, I owe the all the fun and any success I had to the entire PLSE group.

Thanks especially to Zach Tatlock, without whom PLSE would simply not be the same. The

main component of this thesis is the egg paper, and my co-authors in that work deserve a special

shoutout for making that project what it is: Chandrakana Nandi, Remy Wang, Oliver Flatt, Zach

Tatlock, and Pavel Panchekha.

Thanks to my friends and family for making this journey possible and even enjoyable. And

�nally, thank you Sami for doing this whole thing with me.

vii



Chapter 1

Introduction

At the heart of programming languages lies the question of how to represent and manipulate pro-

grams. Nearly all aspects of programming language work—including theorem proving, optimizing

compilers, and program synthesis—depend on these fundamental notions, since they dictate how

(and how e�ciently!) a tool stores and works with programs. The choice of how to represent and

manipulate programs largely determines the the e�cacy of a tool or technique.

This thesis takes a fresh look at a data structure called the e-graph [Nel80] and a technique called

equality saturation [TSTL09] for representing and manipulating programs, respectively. Together,

they o�er great promise over the status quo of syntax trees and term rewriting, Unfortunately,

poor scalability and �exibility has limited the approach’s reach.

To bring e-graphs and equality saturation into the programming language practitioner’s

toolbox, this thesis makes the following claim:

E-graphs and equality saturation are compelling techniques for program representation

and manipulation that should now be considered for programming tools across many

domains.

1



2 Chapter 1. Introduction

The rest of this document supports that claim up in three ways:

1. Our original research contributions presented in Chapter 3 and Chapter 4 advance the

state-of-the-art around e-graphs and equality saturation, enhancing both so that together

they form a compelling alternative to conventional term rewriting.

2. These theoretical advances are realized in egg, a �rst-of-its-kind tool that has brought

e-graphs and equality saturation to a wider range of users and domains than ever before.

Chapter 5 documents how egg combines novel techniques with myriad practical niceties to

make a generic, high-performance implementation of e-graphs and equality saturation.

3. Chapter 6 makes an empirical case for the thesis statement in the form of published projects

that rely on egg. These case studies demonstrate that e-graphs and equality saturation can

now be used to achieve state-of-the-art results in various domains.

1.1 The World Before egg

Abstract syntax trees and directed term rewriting are (and will likely remain) the most popular

approached for program representation and manipulation. We defer discussion of issues with this

approach to Chapter 2. Here I would like to set the stage a little and describe the setting in which

this thesis’s contributions were made.

Equality graphs (e-graphs) were developed in late 1970s to e�ciently represent congruence

relations in automated theorem provers (ATPs). At a high level, e-graphs [Nel80, NO05] extend

union-�nd [Tar75] to compactly represent equivalence classes of expressions while maintaining a

key invariant: the equivalence relation is closed under congruence.1

1Intuitively, congruence simply means that 0 ≡ 1 implies 5 (0) ≡ 5 (1).
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InitializeInput
Term

Extract
E-graph Optimized

Term

Apply Rewrites

Figure 1.1: Equality saturation optimizes a program ? by storing it in an e-graph, growing the
e-graph into a large set of equivalent terms by applying rewrites, and finally selecting the best
program that is equivalent to ? .

In the 2000s, work like Denali [JNR02] and the �rst equality saturation papers [TSTL09, STL11]

began to repurpose e-graphs as the basis for program optimization. Given an input program ? ,

equality saturation constructs an e-graph � that represents a large set of programs equivalent to

? , and then extracts the “best” program from �. The e-graph is grown by repeatedly applying

pattern-based rewrites ℓ → A . Each rewrite ℓ → A includes a pattern ℓ to match and a pattern A to

instantiate and merge with the matched subterm. Critically, these rewrites only add information2

to the e-graph, eliminating the need for careful ordering. Upon reaching a �xed point (saturation),

� will represent all equivalent ways to express ? with respect to the given rewrites. After saturation

(or timeout), a �nal extraction procedure analyzes � and selects the optimal program according to

a user-provided cost function.

Ideally, a user could simply provide a language grammar and rewrites, and equality saturation

would produce a e�ective optimizer. Three challenges blocked this ideal:

1. Maintaining congruence can become expensive as � grows. In part, this is because e-graphs

from the conventional ATP setting remained unspecialized to the distinct equality saturation

workload. Early applications based on equality saturation had to limit their searches, which

can impact the quality of results.

2. Many applications critically depend on domain-speci�c analyses, but integrating them
2As opposed to traditional term rewriting which only considers a single term at a time. Section 2.1 covers this in

detail.
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required ad hoc extensions to the e-graph. The lack of a general extension mechanism

forced researchers to re-implement equality saturation from scratch several times [PSSWT15,

TSTL09, WZN+19].

3. Even outside of the context of domain-speci�c analyses, the lack of a generic implementation

of e-graphs and equality saturation made the “just bring your grammar and rewrites” vision

impossible. Users had to start from scratch and reimplement state-of-the-art techniques for

their own domain.

1.2 The egg Era

Figure 1.2: The egg logo.

The work presented in this thesis addresses all of the con-

cerns raised above. Our theoretical contributions make

e-graphs and equality saturation faster and more �exible,

and egg makes it all usable in real-world applications.

Equality Saturation Workload ATPs frequently query and modify e-graphs and additionally

require the ability to undo modi�cations (e.g., in DPLL(T) [DP60]). This forces conventional

e-graph designs to maintain the congruence invariant after every operation. In contrast, the

equality saturation workload can be factored into distinct phases of (1) querying the e-graph to

simultaneously �nd all rewrite matches and (2) modifying the e-graph to merge in equivalences

for all matched terms.

We present a new amortized algorithm called rebuilding (Chapter 3) that defers e-graph

invariant maintenance to equality saturation phase boundaries without compromising soundness.

Empirically, rebuilding provides asymptotic speedups over conventional approaches.
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Domain-speci�c Analyses Equality saturation is primarily driven by syntactic rewriting, but

many applications require additional interpreted reasoning to bring domain knowledge into the

e-graph. Past implementations have resorted to ad hoc e-graph manipulations to integrate what

would otherwise be simple program analyses like constant folding.

To �exibly incorporate such reasoning, we introduce a new, general mechanism called e-class

analyses (Chapter 4). An e-class analysis annotates each e-class (an equivalence class of terms) with

facts drawn from a semilattice domain. As the e-graph grows, facts are introduced, propagated,

and joined to satisfy the e-class analysis invariant, which relates analysis facts to the terms

represented in the e-graph. Rewrites cooperate with e-class analyses by depending on analysis

facts and adding equivalences that in turn establish additional facts. The examples and case studies

demonstrate e-class analyses like constant folding and free variable analysis which required

bespoke customization in previous equality saturation implementations.

A generic, high-performance implementation We implement rebuilding and e-class anal-

yses in an open-source3 library called egg (e-graphs good). egg speci�cally targets equality

saturation, taking advantage of its workload characteristics and supporting easy extension mecha-

nisms to provide e-graphs specialized for program synthesis and optimization. egg also addresses

more prosaic challenges, e.g., parameterizing over user-de�ned languages, rewrites, and cost

functions while still providing an optimized implementation. Our case studies in Chapter 6 demon-

strate how egg’s features constitute a general, reusable e-graph library that can support equality

saturation across diverse domains.

In summary, I believe that equality saturation has a big role in the future of programming

languages. When so many of the challenges to building programming tools revolve around choice,

3 web: https://egraphs-good.github.io
source: https://github.com/egraphs-good/egg
documentation: https://docs.rs/egg

https://egraphs-good.github.io
https://github.com/egraphs-good/egg
https://docs.rs/egg
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equality saturation’s ability to operate over many terms simultaneously is hard to ignore. Even

in situations where equality saturation is not the best approach, it may be the easiest, since it

o�oads work from the developer to the computer. More complex applications may require making

a particular choice at some points and taking all possible paths in others; egg’s practical, generic

implementation is a compatible with this approach as well.

Fast and �exible equality saturation provides the power to not choose how to manipulate

programs, which can be a boon to both power users and domain experts who may not have expertise

in building programming language tools. I hope this thesis and egg are steps toward having

e-graphs and equality saturation in the toolbox of anyone working with programs, regardless of

their expertise, the size and scale of the problem, or the application domain.



Chapter 2

Background

2.1 Term Representation and Rewriting

The most common and easily understood program representation is the venerable abstract syntax

tree (AST). An AST is a recursive tree data structure where a node is an operator and some

number—potentially zero—of children ASTs. For example, the program (0 ∗ 2)/2 is represented by

the AST shown in Figure 2.1a. The operators ∗ and / each take two children; the variable 0 and

the number 2 are leaf operators that take no children.

ASTs are the primary data structures used in most programming tools, but they are not the

only ones. A common alternate representation is the term graph, which can be viewed as a variant

of ASTs that allows directed acyclic graphs instead of just trees. Term graphs can therefore capture

sharing across common parts of a program (also known as a term). Figure 2.1b shows a term graph

for the program (0 ∗ 2)/2.

Regardless of the choice of program representation, a common technique for program ma-

nipulation is rewriting. In this paradigm, program transformations are given as a set of rewrites,

where each rewrite ℓ → A speci�es a pattern ℓ to search for and a another pattern A with which to

7



8 Chapter 2. Background

/

2

2*

a

(a) AST without sharing.

/

2

*

a

(b) Term graph with sharing.

Figure 2.1: Di�erent representations of the program (0 ∗ 2)/2 have di�erent characteristics. The
syntax tree is simpler (a), but the term graph is smaller since it captures sharing (b).

replace each instance of ℓ found in the program. For example, applying the rewrite G ∗ 2→ G + G

to our term (0 ∗ 2)/2 yields (0 + 0)/2.

Stated more formally, applying rewrite ℓ → A on a term C works as follows. First, search for

the ℓ within C , yielding a substitution f and a subterm B of C such that f maps variables from ℓ

to terms and ℓ [f] = B , where ℓ [f] denotes replacing the variables in ; with the corresponding

terms in f . With the substitution in hand, applying the rewrite simply replaces ℓ [f] with A [f] in

C (since ℓ [f] equals some subterm B of C ).

Rewriting o�ers an intuitive, compositional, and e�cient method to transform programs that is

used in programming tools of all shapes and sizes. It is a well-researched technique with a wealth

of literature (surveyed in [Der93, DJ90]), and many programming language tools implement and

rely on it.

Term rewriting (in its traditional directed form) does, however, su�er from pitfalls that can

complicate or prevent the building of certain rewrite-based systems. Many of these weaknesses

boil down to the fact that term rewriting operates on one term at a time; once a term is rewritten,

you are left with the new version and have essentially forgotten the old version. The quality of a

rewriting system’s output can heavily depend on the order and manner in which is applies its

rewrites. In other words, choices really matter in this paradigm. The compilers community refers

to this as the phase-ordering problem [WS97, TSTL09].
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/

2

2*

a

/

1

2<<

a
(a) Sometimes a locally “good” rewrite can be a poor choice down the road. In this case, we would ultimately
like to rewrite (0 ∗ 2)/2 to 2. But applying G ∗ 2→ G � 1 is hard to pass up, since replacing a (relatively)
expensive multiplication with a cheap bitshi� is nearly always a good decision. Applying that locally
beneficial rewrite makes canceling out the 2s much more di�icult.

/

2

2*

a

/

a

2*

2

/

2

2*

a
(b) Seemingly innocuous rewrites like commutativity of multiplication (G ∗~ → ~ ∗ G ) can send a rewriting
system into a loop. Directed rewriting systems can avoid this by applying these rewrites in only one
direction or trying to observe when they have encountered a term they have seen before.

/

2

2*

a

/

2*

*

1

a 2

1

*

/

2*

*

1

a 2

(c) Expansive rewrites like G → G ∗ 1 can enable other rewrites, but they are problematic for traditional
rewriting systems since they can always be applied, potentially leading to infinitely large terms.

Figure 2.2: Conventional directed rewriting can go wrong in various ways if the wrong rewriting
is applied at the wrong time. Orange highlighting indicates what changed from the initial term
in each subfigure.
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function symbols 5 , 6

e-class ids 0, 1 opaque identi�ers
terms C ::= 5 | 5 (C1, . . . , C<) < ≥ 1

e-nodes = ::= 5 | 5 (01, . . . , 0<) < ≥ 1
e-classes 2 ::= {=1, . . . , =<} < ≥ 1

Figure 2.3: Syntax and metavariables for the components of an e-graph. Function symbols may
stand alone as constant e-nodes and terms. An e-class id is an opaque identifier that can be
compared for equality with =.

Figure 2.2 shows some concrete examples of how poor rewrite choice can cause undesirable

results.

2.2 E-Graphs

An e-graph is a data structure that stores a set of terms and a congruence relation over those

terms. Originally developed for and still used in the heart of theorem provers [Nel80, DNS05,

DMB08], e-graphs have also been used to power a program optimization technique called equality

saturation [JNR02, TSTL09, STL11, NWA+20, PKSL20, WHL+20, PSSWT15].

2.2.1 De�nitions

Intuitively, an e-graph is a set of equivalence classes (e-classes). Each e-class is a set of e-nodes

representing equivalent terms from a given language, and an e-node is a function symbol paired

with a list of children e-classes. More precisely:

De�nition 2.1 (De�nition of an E-Graph) Given the de�nitions and syntax in Figure 2.3, an

e-graph is a tuple (* ,",� ) where:
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• A union-�nd data structure [Tar75]* stores an equivalence relation (denoted with ≡id) over

e-class ids.

• The e-class map " maps e-class ids to e-classes. All equivalent e-class ids map to the same

e-class, i.e., 0 ≡id 1 i�" [0] is the same set as" [1]. An e-class id 0 is said to refer to the e-class

" [find(0)].

• The hashcons1 � is a map from e-nodes to e-class ids.

Note that an e-class has an identity (its canonical e-class id), but an e-node does not.2 We use

e-class id 0 and the e-class" [find(0)] synonymously when clear from the context.

De�nition 2.2 (Canonicalization) An e-graph’s union-�nd * provides a find operation that

canonicalizes e-class ids such that find(* , 0) = find(* ,1) i� 0 ≡id 1. We omit the �rst argument

of find where clear from context.

• An e-class id 0 is canonical i� find(0) = 0.

• An e-node = is canonical i� = = canonicalize(=), where

canonicalize(5 (01, 02, ...)) = 5 (find(01), find(02), ...).

De�nition 2.3 (Representation of Terms) An e-graph, e-class, or e-node is said to represent a

term C if C can be “found” within it. Representation is de�ned recursively:

• An e-graph represents a term if any of its e-classes do.

• An e-class 2 represents a term if any e-node = ∈ 2 does.
1We use the term hashcons to evoke the memoization technique, since both avoid creating new duplicates of

existing objects.
2Our de�nition of an e-graph re�ects egg’s design and therefore di�ers with some other e-graph de�nitions and

implementations. In particular, making e-classes but not e-nodes identi�able is unique to our de�nition.
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• An e-node 5 (01, 02, ...) represents a term 5 (C1, C2, ...) if they have the same function symbol 5

and e-class" [08] represents term C8 .

When each e-class is a singleton (containing only one e-node), an e-graph is essentially a term

graph with sharing. Figure 2.4a shows an e-graph that represents the expression (0 × 2)/2.

De�nition 2.4 (Equivalence) An e-graph de�nes three equivalence relations.

• Over e-class ids: 0 ≡id 1 i� find(0) = find(1).

• Over e-nodes: =1 ≡node =2 i� e-nodes =1, =2 are in the same e-class, i.e., ∃0. =1, =2 ∈ " [0].

• Over terms: C1 ≡term C2 i� terms C1, C2 are represented in the same e-class.

We use ≡ without the subscript when the relation is clear from context.

De�nition 2.5 (Congruence) For a given e-graph, let � denote a congruence relation over e-nodes

such that 5 (01, 02, ...) � 5 (11, 12, ...) i� 08 ≡id 18 . Let �∗ denote the congruence closure of ≡node, i.e.,

the smallest superset of ≡node that is also a superset of �. Note that there may be two e-nodes such

that =1 �∗ =2 but =1 � =2 and =1 6≡node =2. The relation � only represents a single step of congruence;

more than one step may be required to compute the congruence closure.

2.2.2 E-Graph Invariants

The e-graph must maintain invariants in order to correctly and e�ciently implement the operations

given in Section 2.2.3. This section only de�nes the invariants, discussion of how they are

maintained is deferred to Chapter 3. These are collectively referred to as the e-graph invariants.

De�nition 2.6 (The Congruence Invariant) The equivalence relation over e-nodesmust be closed

over congruence, i.e., (≡node) = (�∗). The e-graph must ensure that congruent e-nodes are in the
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same e-class. Since identical e-nodes are trivially congruent, this implies that an e-node must be

uniquely contained in a single e-class.

De�nition 2.7 (The Hashcons Invariant) The hashcons � must map all canonical e-nodes to

their e-class ids. In other words:

e-node = ∈ " [0] ⇐⇒ � [canonicalize(=)] = find(0)

If the hashcons invariant holds, then a procedure lookup can quickly �nd which e-class (if any)

has an e-node congruent to a given e-node =: lookup(=) = � [canonicalize(=)].

2.2.3 Interface and Rewriting

E-graphs bear many similarities to the classic union-�nd data structure that they employ inter-

nally, and they inherit much of the terminology. E-graphs provide two main low-level mutating

operations:

• add takes an e-node = and:

– if lookup(=) = 0, return 0;

– if lookup(=) = ∅, then set " [0] = {=} and return the id 0.

• merge (sometimes called assert or union) takes two e-class ids 0 and 1, unions them in the

union-�nd* , and combines the e-classes by setting both " [0] and " [1] to " [0] ∪" [1].

Both of these operations must take additional steps to maintain the congruence invariant.

Invariant maintenance is discussed in Chapter 3.

E-graphs also o�ers operations for querying the data structure.
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/
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*
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(a) Initial e-graph contains (0 × 2)/2.

/

a

*

2 1

<<

(b) Applied G × 2→ G � 1.

/

a

*

2 1

<<

*

/

(c) Applied rewrite (G × ~)/I → G × (~/I).

/

a

*

2 1

<<

*

/

(d) Applied G/G → 1 and 1 × G → G .

Figure 2.4: An e-graph consists of e-classes (dashed boxes) containing equivalent e-nodes (solid
boxes). Edges connect e-nodes to their child e-classes. Additions and modifications are empha-
sized in black. Applying rewrites to an e-graph adds new e-nodes and edges, but nothing is
removed. Expressions added by rewrites are merged with the matched e-class. In Figure 2.4d, the
rewrites do not add any new nodes, they only merge e-classes; so the e-graph gets smaller but
represents more terms. Since the resulting e-graph has a cycle, it actually represents infinitely
many expressions: 0, 0 × 1, 0 × 1 × 1, and so on.
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• find canonicalizes e-class ids using the union-�nd* as described in de�nition 2.1.

• ematch performs the e-matching [DNS05, dMB07] procedure for �nding patterns in the

e-graph. ematch takes a pattern term ? with variable placeholders and returns a list of

tuples (f, 2) where f is a substitution of variables to e-class ids such that ? [f] is represented

in e-class 2 .

These can be composed to perform rewriting over the e-graph. To apply a rewrite ℓ → A to

an e-graph, ematch �nds tuples (f, 2) where e-class 2 represents ℓ [f]. Then, for each tuple,

merge(2, add(A [f])) adds A [f] to the e-graph and uni�es it with the matching e-class c.

Figure 2.4 shows an e-graph undergoing a series of rewrites. Note how the process is only

additive; the initial term (0 × 2)/2 is still represented in the e-graph. Rewriting in an e-graph

can also saturate, meaning the e-graph has learned every possible equivalence derivable from

the given rewrites. If the user tried to apply G × ~ → ~ × G to an e-graph twice, the second time

would add no additional e-nodes and perform no new merges; the e-graph can detect this and

stop applying that rule.

2.3 Equality Saturation

Term rewriting [Der93] is a time-tested approach for equational reasoning in program optimiza-

tion [TSTL09, JNR02], theorem proving [DNS05, DMB08], and program transformation [AEH+99].

In this setting, a tool repeatedly chooses one of a set of axiomatic rewrites, searches for matches of

the left-hand pattern in the given expression, and replaces matching instances with the substituted

right-hand side. It does, however, su�er from drawbacks such as the phase ordering problem

(Section 2.1).

One solution to the phase ordering problem would simply apply all rewrites simultaneously,
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1 def equality_saturation(expr, rewrites):
2 egraph = initial_egraph(expr)
3
4 while not egraph.is_saturated_or_timeout():
5
6 for rw in rewrites:
7 for (subst, eclass) in egraph.ematch(rw.lhs):
8 eclass2 = egraph.add(rw.rhs.subst(subst))
9 egraph.merge(eclass, eclass2)

10
11 return egraph.extract_best()

Figure 2.5: Pseudocode for equality saturation. Traditionally, equality saturation maintains the
e-graph data structure invariants throughout the algorithm.

keeping track of every expression seen. This eliminates the problem of choosing the correct rule,

but a naive implementation would require space exponential in the number of given rewrites.

Equality saturation [TSTL09, STL11] is a technique to do this rewriting e�ciently using an e-graph.

Figure 2.5 shows the equality saturation work�ow. First, an initial e-graph is created from the

input term. The core of the algorithm runs a set of rewrite rules until the e-graph is saturated (or

a timeout is reached). Finally, a procedure called extraction selects the optimal represented term

according to some cost function. For simple cost functions, a bottom-up, greedy traversal of the

e-graph su�ces to �nd the best term. Other extraction procedures have been explored for more

complex cost functions [WHL+20, WZN+19].

Equality saturation eliminates the tedious and often error-prone task of choosing when to

apply which rewrites, promising an appealingly simple work�ow: state the relevant rewrites for

the language, create an initial e-graph from a given expression, �re the rules until saturation, and

�nally extract the cheapest equivalent expression. Unfortunately, the technique remains ad hoc;

prospective equality saturation users must implement their own e-graphs customized to their

language, avoid performance pitfalls, and hack in the ability to do interpreted reasoning that is
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not supported by purely syntactic rewrites. egg aims to address each aspect of these di�culties.

Equality Saturation and Theorem Proving An equality saturation engine and a theorem

prover each have capabilities that would be impractical to replicate in the other. Automated

theorem provers like satis�ability modulo theory (SMT) solvers are general tools that, in addition

to supporting satis�ability queries, incorporate sophisticated, domain-speci�c solvers to allow

interpreted reasoning within the supported theories. On the other hand, equality saturation is

specialized for optimization, and its extraction procedure directly produces an optimal term with

respect to a given cost function.

While SMT solvers are indeed the more general tool, equality saturation is not superseded by

SMT; the specialized approach can be much faster when the full generality of SMT is not needed.

To demonstrate this, we replicated a portion of the recent TASO paper [JPT+19], which optimizes

deep learning models. As part of the work, they must verify a set of synthesized equalities with

respect to a trusted set of universally quanti�ed axioms. TASO uses Z3 [DMB08] to perform the

veri�cation even though most of Z3’s features (disjunctions, backtracking, theories, etc.) were

not required. An equality saturation engine can also be used for verifying these equalities by

adding the left and right sides of each equality to an e-graph, running the axioms as rewrites, and

then checking if both sides end up in the same e-class. Z3 takes 24.65 seconds to perform the

veri�cation; egg performs the same task in 1.56 seconds (15× faster), or only 0.52 seconds (47×

faster) when using egg’s batched evaluation (Section 5.3).

Equality Saturation and Superoptimization The Denali [JNR02] superoptimizer �rst demon-

strated how to use e-graphs for optimized code generation as an alternative to hand-optimized

machine code and prior exhaustive approaches [Mas87], both of which were less scalable. The

inputs to Denali are programs in a C-like language from which it produces assembly programs.
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Denali supported three types of rewrites—arithmetic, architectural, and program-speci�c. After

applying these rewrites till saturation, it used architectural description of the hardware to generate

constraints that were solved using a SAT solver to output a near-optimal program. While Denali’s

approach was a signi�cant improvement over prior work, it was intended to be used on straight

line code only and therefore, did not apply to large real programs.

Equality saturation [TSTL09, STL11] developed a compiler optimization phase that works for

complex language constructs like loops and conditionals. The �rst equality saturation paper used

an intermediate representation called Program Expression Graphs (PEGs) to encode loops and

conditionals. PEGs have specialized nodes that can represent in�nite sequences, which allows

them to represent loops. It uses a global pro�tability heuristic for extraction which is implemented

using a pseudo-boolean solver. Recently, [PKSL20] used PEGs for code search. egg can support

PEGs as a user-de�ned language, and thus their technique could be ported.



Chapter 3

Rebuilding: A New Take on E-graph

Invariant Maintenance

Traditionally [Nel80, DNS05], e-graphs maintain their data structure invariants after each opera-

tion. We separate this invariant restoration into a procedure called rebuilding. This separation

allows the client to choose when to enforce the e-graph invariants. Performing a rebuild imme-

diately after every operation replicates the traditional approach to invariant maintenance. In

contrast, rebuilding less frequently can amortize the cost of invariant maintenance, signi�cantly

improving performance.

In this section, we �rst describe how e-graphs have traditionally maintained invariants (Sec-

tion 3.1). We then describe the rebuilding framework and how it captures a spectrum of invariant

maintenance approaches, including the traditional one (Section 3.2). Using this �exibility, we

then give a modi�ed algorithm for equality saturation that enforces the e-graph invariants at only

select points (Section 3.3). We �nally demonstrate that this new approach o�ers an asymptotic

speedup over traditional equality saturation (Section 3.4).

19
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3.1 Upward Merging

Both mutating operations on the e-graph (add and merge, Section 2.2.3) can break the e-graph

invariants if not done carefully. E-graphs have traditionally used hashconsing and upward merging

to maintain the congruence invariant.

The add operation relies on the hashcons invariant (De�nition 2.7) to quickly check whether

the e-node = to be added—or one congruent to it—is already present. Without this check, add

would create a new e-class with = in it even if some =′ � = was already in the e-graph, violating

the congruence invariant.

The merge operation e-classes can violate both e-graph invariants. If 5 (0, 1) and 5 (0, 2) reside

in two di�erent e-classes G and ~, merging 1 and 2 should also merge G and ~ to maintain the

congruence invariant. This can propagate further, requiring additional merges.

E-graphs maintain a parent list for each e-class to maintain congruence. The parent list for

e-class 2 holds all e-nodes that have 2 as a child. When merging two e-classes, e-graphs inspect

these parent lists to �nd parents that are now congruent, recursively “upward merging” them if

necessary.

The merge routine must also perform bookkeeping to preserve the hashcons invariant. In

particular, merging two e-classes may change how parent e-nodes of those e-classes are canoni-

calized. The merge operation must therefore remove, re-canonicalize, and replace those e-nodes

in the hashcons. In existing e-graph implementations [PSSWT15] used for equality saturation,

maintaining the invariants while merging can take the vast majority of run time.



3.1. Upward Merging 21

1 def add(enode):
2 enode = self.canonicalize(enode)
3 if enode in self.hashcons:
4 return self.hashcons[enode]
5 else:
6 eclass_id = self.new_singleton_eclass(enode)
7 for child in enode.children:
8 child.parents.add(enode, eclass_id)
9 self.hashcons[enode] = eclass_id

10 return eclass_id
11
12 def merge(id1, id2)
13 if self.find(id1) == self.find(id2):
14 return self.find(id1)
15 new_id = self.union_find.union(id1, id2)
16 # traditional egraph merge can be
17 # emulated by calling rebuild right after
18 # adding the eclass to the worklist
19 self.worklist.add(new_id)
20 return new_id
21
22 def canonicalize(enode)
23 new_ch = [self.find(e) for e in enode.children]
24 return mk_enode(enode.op, new_ch)
25
26 def find(eclass_id):
27 return self.union_find.find(eclass_id)

27 def rebuild():
28 while self.worklist.len() > 0:
29 # empty the worklist into a local variable
30 todo = take(self.worklist)
31 # canonicalize and deduplicate the eclass refs
32 # to save calls to repair
33 todo = { self.find(eclass) for eclass in todo }
34 for eclass in todo:
35 self.repair(eclass)
36
37 def repair(eclass):
38 # update the hashcons so it always points
39 # canonical enodes to canonical eclasses
40 for (p_node, p_eclass) in eclass.parents:
41 self.hashcons.remove(p_node)
42 p_node = self.canonicalize(p_node)
43 self.hashcons[p_node] = self.find(p_eclass)
44
45 # deduplicate the parents, noting that equal
46 # parents get merged and put on the worklist
47 new_parents = {}
48 for (p_node, p_eclass) in eclass.parents:
49 p_node = self.canonicalize(p_node)
50 if p_node in new_parents:
51 self.merge(p_eclass, new_parents[p_node])
52 new_parents[p_node] = self.find(p_eclass)
53 eclass.parents = new_parents

Figure 3.1: Pseudocode for the add, merge, rebuild, and supporting methods. In each method,
self refers to the e-graph being modified.
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3.2 Rebuilding in Detail

Traditionally, invariant restoration is part of the merge operation itself. Rebuilding separates

these concerns, reducing merge’s obligations and allowing for amortized invariant maintenance.

In the rebuilding paradigm, merge maintains a worklist of e-class ids that need to be “upward

merged”, i.e., e-classes whose parents are possibly congruent but not yet in the same e-class.

The rebuild operation processes this worklist, restoring the invariants of deduplication and

congruence. Rebuilding is similar to other approaches in how it restores congruence but it uniquely

allows the client to choose when to restore invariants in the context of a larger algorithm like

equality saturation.1

Figure 3.1 shows pseudocode for the main e-graph operations and rebuilding. Note that add

and canonicalize are given for completeness, but they are unchanged from the traditional

e-graph implementation. The merge operation is similar, but it only adds the new e-class to the

worklist instead of immediately starting upward merging. Adding a call to rebuild right after

the addition to the worklist (Figure 3.1 line 19) would yield the traditional behavior of restoring

the invariants immediately.

The rebuild method essentially calls repair on the e-classes from the worklist until the

worklist is empty. Instead of directly manipulating the worklist, egg’s rebuild method �rst moves

it into a local variable and deduplicates e-classes up to equivalence. Processing the worklist may

merge e-classes, so breaking the worklist into chunks ensures that e-class ids made equivalent in

1Our rebuilding algorithm is similar to the congruence closure algorithm presented by [DST80]. The contribution
of rebuilding is not how it restores the e-graph invariants but when; it gives the client the ability to specialize invariant
restoration to a particular workload like equality saturation. Their algorithm also features a worklist of merges to
be processed further, but it is o�ine, i.e., the algorithm processes a given set of equalities and outputs the set of
equalities closed over congruence. Rebuilding is adapted to the online e-graph (and equality saturation) setting, where
rewrites frequently examine the current set of equalities and assert new ones. Rebuilding additionally propagates
e-class analysis facts (Section 4.1). Despite these di�erences, the core algorithms algorithms are similar enough
that theoretical results on o�ine performance characteristics [DST80] apply to both. We do not provide theoretical
analysis of rebuilding for the online setting; it is likely highly workload dependent.
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the previous chunk are deduplicated in the subsequent chunk.

The actual work of rebuild occurs in the repair method. repair examines an e-class 2

and �rst canonicalizes e-nodes in the hashcons that have 2 as a child. Then it performs what is

essentially one “layer” of upward merging: if any of the parent e-nodes have become congruent,

then their e-classes are merged and the result is added to the worklist.

Deduplicating the worklist, and thus reducing calls to repair, is at the heart of why deferring

rebuilding improves performance. Intuitively, the upward merging process of rebuilding traces out

a “path” of congruence through the e-graph. When rebuilding happens immediately after merge

(and therefore frequently), these paths can substantially overlap. By deferring rebuilding, the

chunk-and-deduplicate approach can coalesce the overlapping parts of these paths, saving what

would have been redundant work. In our modi�ed equality saturation algorithm (Section 3.3),

deferred rebuilding is responsible for a signi�cant, asymptotic speedup (Section 3.4).

3.2.1 Examples of Rebuilding

Deferred rebuilding speeds up congruence maintenance by amortizing the work of maintaining the

hashcons invariant. Consider the following terms in an e-graph: 51(G), ..., 5= (G), ~1, ..., ~= . Let the

workload be merge(G,~1), ..., merge(G,~=). Each merge may change the canonical representation

of the 58 (G)s, so the traditional invariant maintenance strategy could require $ (=2) hashcons

updates. With deferred rebuilding the merges happen before the hashcons invariant is restored,

requiring no more than $ (=) hashcons updates.

Deferred rebuilding can also reduce the number of calls to repair. Consider the followingF

terms in an e-graph, each nested under 3 function symbols:

51(52(. . . 53 (G1))), . . . , 51(52(. . . 53 (GF )))
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Note thatF corresponds the width of this group of terms, and 3 to the depth. Let the workload be

F − 1 merges that merge all the Gs together: for 8 ∈ [2,F], merge(G1, G8).

In the traditional upward merging paradigm where rebuild is called after every merge, each

merge(G8, G 9 ) will require $ (3) calls to repair to maintain congruence, one for each layer of 58s.

Over the whole workload, this requires $ (F3) calls to repair.

With deferred rebuilding, however, the F − 1 merges can all take place before congruence

must be restored. Suppose the Gs are all merged into an e-class 2G When rebuild �nally is called,

the only element in the deduplicated worklist is 2G . Calling repair on 2G will merge the e-classes

of the 53 e-nodes into an e-class 2 53 , adding the e-classes that contained those e-nodes back to

the worklist. When the worklist is again deduplicated, 2 53 will be the only element, and the

process repeats. Thus, the whole workload only incurs $ (3) calls to repair, eliminating the

factor corresponding to the width of this group of terms. Figure 3.5 shows that the number calls

to repair is correlated with time spent doing congruence maintenance.

3.2.2 Proof of Congruence

Intuitively, rebuilding is a delay of the upward merging process, allowing the user to choose when

to restore the e-graph invariants. They are substantially similar in structure, with a critical a

di�erence in when the code is run. Below we o�er a proof demonstrating that rebuilding restores

the e-graph congruence invariant.

Theorem 3.1 Rebuilding restores congruence and terminates.

Proof 3.1 Since rebuilding only merges congruent nodes, the congruence closure �∗ is �xed even

though ≡node changes. When (≡node) = (�∗), congruence is restored. Note that both ≡node and �∗ are

�nite. We therefore show that rebuilding causes ≡node to approach �∗. We de�ne the set of incongruent

e-node pairs as � = (�∗) \ (≡node); in other words, (=1, =2) ∈ � if =1 �∗ =2 but =1 6≡node =2.
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Due to the additive nature of equality saturation, ≡node only increases and therefore � is non-

increasing. However, a call to repair inside the loop of rebuild does not necessarily shrink � . Some

calls instead remove an element from the worklist but do not modify the e-graph at all.

Let the set, be the worklist of e-classes to be processed by repair; in Figure 3.1,, corresponds

to self.worklist plus the unprocessed portion of the todo local variable. We show that each call to

repair decreases the tuple ( |� |, |, |) lexicographically until ( |� |, |, |) = (0, 0), and thus rebuilding

terminates with (≡node) = (�∗).

Given an e-class 2 from, , repair examines 2’s parents for congruent e-nodes that are not yet

in the same e-class:

• If at least one pair of 2’s parents are congruent, rebuilding merges each pair (?1, ?2), which

adds to, but makes � smaller by de�nition.

• If no such congruent pairs are found, do nothing. Then, |, | is decreased by 1 since 2 came from

the worklist and repair did not add anything back.

Since ( |� |, |, |) decreases lexicographically, |, | eventually reaches 0, so rebuild terminates.

Note that, contains precisely those e-classes that need to be “upward merged” to check for congruent

parents. So, when, is empty, rebuild has e�ectively performed upward merging. By [Nel80,

Chapter 7], |� | = 0. Therefore, when rebuilding terminates, congruence is restored.

3.3 Rebuilding and Equality Saturation

Rebuilding o�ers the choice of when to enforce the e-graph invariants, potentially saving work if

deferred thanks to the deduplication of the worklist. The client is responsible for rebuilding at a

time that maximizes performance without limiting the application.
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1 def equality_saturation(expr, rewrites):
2 egraph = initial_egraph(expr)
3
4 while not egraph.is_saturated_or_timeout():
5
6
7 # reading and writing is mixed
8 for rw in rewrites:
9 for (subst, eclass) in egraph.ematch(rw.lhs):

10
11 # in traditional equality saturation,
12 # matches can be applied right away
13 # because invariants are always maintained
14 eclass2 = egraph.add(rw.rhs.subst(subst))
15 egraph.merge(eclass, eclass2)
16
17 # restore the invariants after each merge
18 egraph.rebuild()
19
20 return egraph.extract_best()

(a) Traditional equality saturation alternates be-
tween searching and applying rules, and the
e-graph maintains its invariants throughout.

1 def equality_saturation(expr, rewrites):
2 egraph = initial_egraph(expr)
3
4 while not egraph.is_saturated_or_timeout():
5 matches = []
6
7 # read-only phase, invariants are preserved
8 for rw in rewrites:
9 for (subst, eclass) in egraph.ematch(rw.lhs):

10 matches.append((rw, subst, eclass))
11
12 # write-only phase, temporarily break invariants
13 for (rw, subst, eclass) in matches:
14 eclass2 = egraph.add(rw.rhs.subst(subst))
15 egraph.merge(eclass, eclass2)
16
17 # restore the invariants once per iteration
18 egraph.rebuild()
19
20 return egraph.extract_best()

(b) egg splits equality saturation iterations into
read and write phases. The e-graph invariants are
not constantly maintained, but restored only at
the end of each iteration by the rebuild method
(Chapter 3).

Figure 3.2: Pseudocode for traditional and egg’s version of the equality saturation algorithm.



3.3. Rebuilding and Eqality Saturation 27

egg provides a modi�ed equality saturation algorithm to take advantage of rebuilding. Fig-

ure 3.2 shows pseudocode for both traditional equality saturation and egg’s variant, which exhibits

two key di�erences:

1. Each iteration is split into a read phase, which searches for all the rewrite matches, and a

write phase that applies those matches.2

2. Rebuilding occurs only once per iteration, at the end.

egg’s separation of the read and write phases means that rewrites are truly unordered. In

traditional equality saturation, later rewrites in the given rewrite list are favored in the sense that

they can “see” the results of earlier rewrites in the same iteration. Therefore, the results depend on

the order of the rewrite list if saturation is not reached (which is common on large rewrite lists or

input expressions). egg’s equality saturation algorithm is invariant to the order of the rewrite list.

Separating the read and write phases also allows egg to safely defer rebuilding. If rebuilding

were deferred in the traditional equality saturation algorithm, rules later in the rewrite list would

be searched against an e-graph with broken invariants. Since congruence may not hold, there

may be missing equivalences, resulting in missing matches. These matches will be seen after

the rebuild during the next iteration (if another iteration occurs), but the false reporting could

impact metrics collection, rule scheduling,3 or saturation detection.

2Although the original equality saturation paper [TSTL09] does not have separate reading and writing phases,
some e-graph implementations (like the one inside Z3 [DMB08]) do separate these phases as an implementation
detail. Ours is the �rst algorithm to take advantage of this by deferring invariant maintenance.

3An optimization introduced in Figure 5.2 that relies on an accurate count of how many times a rewrite was
matched.
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3.4 Evaluating Rebuilding

To demonstrate that deferred rebuilding provides faster congruence closure than traditional upward

merging, we modi�ed egg to call rebuild immediately after every merge. This provides a one-to-

one comparison of deferred rebuilding against the traditional approach, isolated from the many

other factors that make egg e�cient: overall design and algorithmic di�erences, programming

language performance, and other orthogonal performance improvements.

We ran egg’s test suite using both rebuild strategies, measuring the time spent on congruence

maintenance. Each test consists of one run of egg’s equality saturation algorithm to optimize a

given expression. Of the 32 total tests, 8 hit the iteration limit of 100 and the remainder saturated.

Note that both rebuilding strategies use egg’s phase-split equality saturation algorithm, and the

resulting e-graphs are identical in all cases. These experiments were performed on a 2020 Macbook

Pro with a 2 GHz quad-core Intel Core i5 processor and 16GB of memory.

Figure 3.3 shows our how rebuilding speeds up congruence maintenance. Overall, our experi-

ments show an aggregate 87.85× speedup on congruence closure and 20.96× speedup over the

entire equality saturation algorithm. Figure 3.4 shows this speedup is asymptotic; the multiplicative

speedup increases as problem gets larger.

egg’s test suite consists of two main applications: math, a small computer algebra system

capable of symbolic di�erentiation and integration; and lambda, a partial evaluator for the untyped

lambda calculus using explicit substitution to handle variable binding (shown in Chapter 5). Both

are typical egg applications primarily driven by syntactic rewrites, with a few key uses of egg’s

more complex features like e-class analyses and dynamic/conditional rewrites.

egg can be con�gured to capture various metrics about equality saturation as it runs, including

the time spent in the read phase (searching for matches), the write phase (applying matches),

and rebuilding. In Figure 3.3, congruence time is measured as the time spent applying matches
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Figure 3.3: Rebuilding once per iteration—as opposed to a�er every merge—significantly speeds
up congruence maintenance. Both plots show the same data: one point for each of the 32 tests.
The diagonal line is ~ = G ; points below the line mean deferring rebuilding is faster. In aggregate
over all tests (using geometric mean), congruence is 87.85× faster, and equality saturation is
20.96× faster. The linear scale plot shows that deferred rebuilding is significantly faster. The log
scale plot suggests the speedup is greater than some constant multiple; Figure 3.4 demonstrates
this in greater detail.
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Figure 3.4: As more rewrites are applied, deferring rebuilding gives greater speedup. Each line
represents a single test: each equality saturation iteration plots the cumulative rewrites applied
so far against the multiplicative speedup of deferring rebuilding; the dot represents the end of
that test. Both the test suite as a whole (the dots) and individual tests (the lines) demonstrate an
asymptotic speedup that increases with the problem size.
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Figure 3.5: The time spent in congruence maintenance correlates with the number of calls to the
repair method. Spearman correlation yields A = 0.98 with a p-value of 3.6e-47, indicating that
the two quantities are indeed positively correlated.
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plus rebuilding. Other parts of the equality saturation algorithm (creating the initial e-graph,

extracting the �nal term) take negligible take compared to the equality saturation iterations.

Deferred rebuilding amortizes the examination of e-classes for congruence maintenance;

deduplicating the worklist reduces the number of calls to the repair. Figure 3.5 shows that time

spent in congruence is correlated with the number of calls to the repair methods.

The case study in Section 6.2 provides a further evaluation of rebuilding. Rebuilding (and

other egg features) have also been implemented in a Racket-based e-graph, demonstrating that

rebuilding is a conceptual advance that need not be tied to the egg implementation.
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Chapter 4

Extending E-graphs with E-class Analyses

As discussed so far, e-graphs and equality saturation provide an e�cient way to implement a term

rewriting system. Rebuilding enhances that e�ciency, but the approach remains designed for

purely syntactic rewrites. However, program analysis and optimization typically require more than

just syntactic information. Instead, transformations are computed based on the input terms and

also semantic facts about that input term, e.g., constant value, free variables, nullability, numerical

sign, size in memory, and so on. The “purely syntactic” restriction has forced existing equality

saturation applications [TSTL09, STL11, PSSWT15] to resort to ad hoc passes over the e-graph to

implement analyses like constant folding. These ad hoc passes require manually manipulating

the e-graph, the complexity of which could prevent the implementation of more sophisticated

analyses.

We present a new technique called e-class analysis, which allows the concise expression of a

program analysis over the e-graph. An e-class analysis resembles abstract interpretation lifted to

the e-graph level, attaching analysis data from a semilattice to each e-class. The e-graph maintains

and propagates this data as e-classes get merged and new e-nodes are added. Analysis data can

be used directly to modify the e-graph, to inform how or if rewrites apply their right-hand sides,

33
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or to determine the cost of terms during the extraction process.

E-class analyses provide a general mechanism to replace what previously required ad hoc

extensions that manually manipulate the e-graph. E-class analyses also �t within the equality

saturation work�ow, so they can naturally cooperate with the equational reasoning provided by

rewrites. Moreover, an analysis lifted to the e-graph level automatically bene�ts from a sort of

“partial-order reduction” for free: large numbers of similar programs may be analyzed for little

additional cost thanks to the e-graph’s compact representation.

This section provides a conceptual explanation of e-class analyses as well as dynamic and

conditional rewrites that can use the analysis data. The following sections will provide concrete

examples: Chapter 5 discusses the egg implementation and a complete example of a partial

evaluator for the lambda calculus; Chapter 6 discusses how three published projects have used

egg and its unique features (like e-class analyses).

4.1 E-Class Analyses

An e-class analysis de�nes a domain � and associates a value 32 ∈ � to each e-class 2 . The e-class

2 contains the associated data 32 , i.e., given an e-class 2 , one can get 32 easily, but not vice-versa.

The interface of an e-class analysis is as follows, where� refers to the e-graph, and = and 2

refer to e-nodes and e-classes within � :
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make(=) → 32 When a new e-node = is added to � into a new, singleton e-class 2 ,

construct a new value 32 ∈ � to be associated with =’s new e-class,

typically by accessing the associated data of =’s children.

join(321, 322) → 32 When e-classes 21, 22 are being merged into 2 , join 321, 322 into a new

value 32 to be associated with the new e-class 2 .

modify(2) → 2′ Optionally modify the e-class 2 based on 32 , typically by adding an

e-node to 2 . Modify should be idempotent if no other changes occur

to the e-class, i.e., modify(modify(2)) = modify(2)

The domain � together with the join operation should form a join-semilattice. The semilattice

perspective is useful for de�ning the analysis invariant (where ∨ is the join operation):

∀2 ∈ �. 32 =
∨
=∈2

make(=) and modify(2) = 2

The �rst part of the analysis invariant states that the data associated with each e-class must

be the join of the make for every e-node in that e-class. Since � is a join-semilattice, this means

that ∀2,∀= ∈ 2, 32 ≥ make(=). The motivation for the second part is more subtle. Since the

analysis can modify an e-class through the modify method, the analysis invariant asserts that

these modi�cations are driven to a �xed point. When the analysis invariant holds, a client looking

at the analysis data can be assured that the analysis is “stable” in the sense that recomputing make,

join, and modify will not modify the e-graph or any analysis data.

4.1.1 Maintaining the Analysis Invariant

We extend the rebuilding procedure from Chapter 3 to restore the analysis invariant as well as the

congruence invariant. Figure 4.1 shows the necessary modi�cations to the rebuilding code from
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1 def add(enode):
2 enode = self.canonicalize(enode)
3 if enode in self.hashcons:
4 return self.hashcons[enode]
5 else:
6 eclass = self.new_singleton_eclass(enode)
7 for child_eclass in enode.children:
8 child_eclass.parents.add(enode, eclass)
9 self.hashcons[enode] = eclass

10 eclass.data = analysis.make(enode)
11 analysis.modify(eclass)
12 return eclass
13
14 def merge(eclass1, eclass2)
15 union = self.union_find.union(eclass1, eclass2)
16 if not union.was_already_unioned:
17 d1, d2 = eclass1.data, eclass2.data
18 union.eclass.data = analysis.join(d1, d2)
19 self.worklist.add(union.eclass)
20 return union.eclass

21 def repair(eclass):
22 for (p_node, p_eclass) in eclass.parents:
23 self.hashcons.remove(p_node)
24 p_node = self.canonicalize(p_node)
25 self.hashcons[p_node] = self.find(p_eclass)
26
27 new_parents = {}
28 for (p_node, p_eclass) in eclass.parents:
29 p_node = self.canonicalize(p_node)
30 if p_node in new_parents:
31 self.union(p_eclass, new_parents[p_node])
32 new_parents[p_node] = self.find(p_eclass)
33 eclass.parents = new_parents

34
35 # any mutations modify makes to eclass
36 # will add to the worklist
37 analysis.modify(eclass)
38 for (p_node, p_eclass) in eclass.parents:
39 new_data = analysis.join(
40 p_eclass.data,
41 analysis.make(p_node))
42 if new_data != p_eclass.data:
43 p_eclass.data = new_data
44 self.worklist.add(p_eclass)

Figure 4.1: The pseudocode for maintaining the e-class analysis invariant is largely similar to how
rebuilding maintains congruence closure (Chapter 3). Only lines 10–11, 17–18, and 37–44 are
added. Grayed out or missing code is unchanged from Figure 3.1.
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Figure 3.1.

Adding e-nodes and merging e-classes risk breaking the analysis invariant in di�erent ways.

Adding e-nodes is the simpler case; lines 10–11 restore the invariant for the newly created, singleton

e-class that holds the new e-node. When merging e-nodes, the �rst concern is maintaining the

semilattice portion of the analysis invariant. Since join forms a semilattice over the domain � of

the analysis data, the order in which the joins occur does not matter. Therefore, line 18 su�ces to

update the analysis data of the merged e-class.

Since make(=) creates analysis data by looking at the data of =’s, children, merging e-classes

can violate the analysis invariant in the same way it can violate the congruence invariant. The

solution is to use the same worklist mechanism introduced in Chapter 3. Lines 37–44 of the

repair method (which rebuild on each element of the worklist) re-make and merge the analysis

data of the parent of any recently merged e-classes. The new repair method also calls modify

once, which su�ces due to its idempotence. In the pseudocode, modify is reframed as a mutating

method for clarity.

egg’s implementation of e-class analyses assumes that the analysis domain � is indeed a

semilattice and that modify is idempotent. Without these properties, egg may fail to restore the

analysis invariant on rebuild, or it may not terminate.

4.1.2 Example: Constant Folding

The data produced by e-class analyses can be usefully consumed by other components of an

equality saturation system (see Section 4.2), but e-class analyses can be useful on their own thanks

to the modify hook. Typical modify hooks will either do nothing, check some invariant about

the e-classes being merged, or add an e-node to that e-class (using the regular add and merge

methods of the e-graph).
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As mentioned above, other equality saturation implementations have implemented constant

folding as custom, ad hoc passes over the e-graph. We can formulate constant folding as an

e-class analysis that highlights the parallels with abstract interpretation. Let the domain � =

Option<Constant>, and let the join operation be the “or” operation of the Option type: Note

match (a, b) {
(None, None ) => None,
(Some(x), None ) => Some(x),
(None, Some(y)) => Some(y),
(Some(x), Some(y)) => { assert!(x == y); Some(x) }

}

how join can also aid in debugging by checking properties about values that are uni�ed in the

e-graph; in this case we assert that all terms represented in an e-class should have the same

constant value. The make operation serves as the abstraction function, returning the constant

value of an e-node if it can be computed from the constant values associated with its children

e-classes. The modify operation serves as a concretization function in this setting. If 32 is a

constant value, then modify(2) would add W (32) = = to 2 , where W concretizes the constant value

into a childless e-node.

Constant folding is an admittedly simple analysis, but one that did not formerly �t within the

equality saturation framework. E-class analyses support more complicated analyses in a general

way, as discussed in later sections on the egg implementation and case studies (Sections 5 and 6).

4.2 Conditional and Dynamic Rewrites

In equality saturation applications, most of the rewrites are purely syntactic. In some cases,

additional data may be needed to determine if or how to perform the rewrite. For example, the

rewrite G/G → 1 is only valid if G ≠ 0. A more complex rewrite may need to compute the
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right-hand side dynamically based on an analysis fact from the left-hand side.

The right-hand side of a rewrite can be generalized to a function apply that takes a substitution

and an e-class generated from e-matching the left-hand side, and produces a term to be added

to the e-graph and uni�ed with the matched e-class. For a purely syntactic rewrite, the apply

function need not inspect the matched e-class in any way; it would simply apply the substitution

to the right-hand pattern to produce a new term.

E-class analyses greatly increase the utility of this generalized form of rewriting. The apply

function can look at the analysis data for the matched e-class or any of the e-classes in the

substitution to determine if or how to construct the right-hand side term. These kinds of rewrites

can broken down further into two categories:

• Conditional rewrites like G/G → 1 that are purely syntactic but whose validity depends on

checking some analysis data;

• Dynamic rewrites that compute the right-hand side based on analysis data.

Conditional rewrites are a subset of the more general dynamic rewrites. Our egg implementa-

tion supports both. The example in Chapter 5 and case studies in Chapter 6 heavily use generalized

rewrites, as it is typically the most convenient way to incorporate domain knowledge into the

equality saturation framework.

4.3 Extraction

Equality saturation typically ends with an extraction phase that selects an optimal represented

term from an e-class according to some cost function. In many domains [PSSWT15, NWA+20],

AST size (sometimes weighted di�erently for di�erent operators) su�ces as a simple, local cost

function. We say a cost function : is local when the cost of a term 5 (01, ...) can be computed



40 Chapter 4. Extending E-graphs with E-class Analyses

from the function symbol 5 and the costs of the children. With such cost functions, extracting an

optimal term can be e�ciently done with a �xed-point traversal over the e-graph that selects the

minimum cost e-node from each e-class [PSSWT15].

Extraction can be formulated as an e-class analysis when the cost function is local. The

analysis data is a tuple (=, : (=)) where = is the cheapest e-node in that e-class and : (=) its cost.

The make(=) operation calculates the cost : (=) based on the analysis data (which contain the

minimum costs) of =’s children. The merge operation simply takes the tuple with lower cost.

The semilattice portion of the analysis invariant then guarantees that the analysis data will

contain the lowest-cost e-node in each class. Extract can then proceed recursively; if the analysis

data for e-class 2 gives 5 (21, 22, ...) as the optimal e-node, the optimal term represented in 2 is

extract(2) = 5 (extract(21), extract(22), ...). This not only further demonstrates the generality of

e-class analyses, but also provides the ability to do extraction “on the �y”; conditional and dynamic

rewrites can determine their behavior based on the cheapest term in an e-class.

Extraction (whether done as a separate pass or an e-class analysis) can also bene�t from the

analysis data. Typically, a local cost function can only look at the function symbol of the e-node =

and the costs of =’s children. When an e-class analysis is attached to the e-graph, however, a cost

function may observe the data associated with =’s e-class, as well as the data associated with =’s

children. This allows a cost function to depend on computed facts rather that just purely syntactic

information. In other words, the cost of an operator may di�er based on its inputs. Section 6.3

provides a motivating case study wherein an e-class analysis computes the size and shape of

tensors, and this size information informs the cost function.
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egg: Easy, Extensible, and E�cient

E-graphs

We implemented the techniques of rebuilding and e-class analysis in egg, an easy-to-use, extensible,

and e�cient e-graph library. To the best of our knowledge, egg is the �rst general-purpose,

reusable e-graph implementation. This has allowed focused e�ort on ease of use and optimization,

knowing that any bene�ts will be seen across use cases as opposed to a single, ad hoc instance.

This section details egg’s implementation and some of the various optimizations and tools it

provides to the user. We use an extended example of a partial evaluator for the lambda calculus1,

for which we provide the complete source code (which few changes for readability) in Figure 5.1

and Figure 5.2. While contrived, this example is compact and familiar, and it highlights (1) how

egg is used and (2) some of its novel features like e-class analyses and dynamic rewrites. It

demonstrates how egg can tackle binding, a perennially tough problem for e-graphs, with a simple

explicit substitution approach powered by egg’s extensibility. Chapter 6 goes further, providing

1E-graphs do not have any “built-in” support for binding; for example, equality modulo alpha renaming is not
free. The explicit substitution provided in this section is is illustrative but rather high in performance cost. Better
support for languages with binding is important future work.
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real-world case studies of published projects that have depended on egg.

egg is implemented in ~5000 lines of Rust,2 including code, tests, and documentation. egg is

open-source, well-documented, and distributed via Rust’s package management system.3 All of

egg’s components are generic over the user-provided language, analysis, and cost functions.

5.1 Ease of Use

egg’s ease of use comes primarily from its design as a library. By de�ning only a language and

some rewrite rules, a user can quickly start developing a synthesis or optimization tool. Using

egg as a Rust library, the user de�nes the language using the define_language! macro shown

in Figure 5.1, lines 1-22. Childless variants in the language may contain data of user-de�ned types,

and e-class analyses or dynamic rewrites may inspect this data.

The user provides rewrites as shown in Figure 5.1, lines 51-100. Each rewrite has a name, a

left-hand side, and a right-hand side. For purely syntactic rewrites, the right-hand is simply a

pattern. More complex rewrites can incorporate conditions or even dynamic right-hand sides,

both explained in the Section 5.2 and Figure 5.2.

Equality saturation work�ows, regardless of the application domain, typically have a similar

structure: add expressions to an empty e-graph, run rewrites until saturation or timeout, and

extract the best equivalent expressions according to some cost function. This “outer loop” of

equality saturation involves a signi�cant amount of error-prone boilerplate:

• Checking for saturation, timeouts, and e-graph size limits.

2Rust [Rus] is a high-level systems programming language. egg has been integrated into applications written in
other programming languages using both C FFI and serialization approaches.

3Source: https://github.com/mwillsey/egg. Documentation: https://docs.rs/egg. Package: https:
//crates.io/crates/egg.
This paper uses version 0.6 of egg.

https://github.com/mwillsey/egg
https://docs.rs/egg
https://crates.io/crates/egg
https://crates.io/crates/egg
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1 define_language! {
2 enum Lambda {
3 // enum variants have data or children (eclass Ids)
4 // [Id; N] is an array of N ‘Id‘s
5
6 // base type operators
7 "+" = Add([Id; 2]), "=" = Eq([Id; 2]),
8 "if" = If([Id; 3]),
9

10 // functions and binding
11 "app" = App([Id; 2]), "lam" = Lambda([Id; 2]),
12 "let" = Let([Id; 3]), "fix" = Fix([Id; 2]),
13
14 // (var x) is a use of ‘x‘ as an expression
15 "var" = Use(Id),
16 // (subst a x b) substitutes a for (var x) in b
17 "subst" = Subst([Id; 3]),
18
19 // base types have no children, only data
20 Bool(bool), Num(i32), Symbol(String),
21 }
22 }
23
24 // example terms and what they simplify to
25 // pulled directly from the egg test suite
26
27 test_fn! { lambda_under, rules(),
28 "(lam x (+ 4 (app (lam y (var y)) 4)))"
29 => "(lam x 8))",
30 }
31
32 test_fn! { lambda_compose_many, rules(),
33 "(let compose (lam f (lam g (lam x
34 (app (var f)
35 (app (var g) (var x))))))
36 (let add1 (lam y (+ (var y) 1))
37 (app (app (var compose) (var add1))
38 (app (app (var compose) (var add1))
39 (app (app (var compose) (var add1))
40 (app (app (var compose) (var add1))
41 (var add1)))))))"
42 => "(lam ?x (+ (var ?x) 5))"
43 }
44
45 test_fn! { lambda_if_elim, rules(),
46 "(if (= (var a) (var b))
47 (+ (var a) (var a))
48 (+ (var a) (var b)))"
49 => "(+ (var a) (var b))"
50 }

51 // Returns a list of rewrite rules
52 fn rules() -> Vec<Rewrite<Lambda, LambdaAnalysis>> { vec![
53
54 // open term rules
55 rw!("if-true"; "(if true ?then ?else)" => "?then"),
56 rw!("if-false"; "(if false ?then ?else)" => "?else"),
57 rw!("if-elim"; "(if (= (var ?x) ?e) ?then ?else)" => "?else"
58 if ConditionEqual::parse("(let ?x ?e ?then)",
59 "(let ?x ?e ?else)")),
60 rw!("add-comm"; "(+ ?a ?b)" => "(+ ?b ?a)"),
61 rw!("add-assoc"; "(+ (+ ?a ?b) ?c)" => "(+ ?a (+ ?b ?c))"),
62 rw!("eq-comm"; "(= ?a ?b)" => "(= ?b ?a)"),
63
64 // substitution introduction
65 rw!("fix"; "(fix ?v ?e)" =>
66 "(let ?v (fix ?v ?e) ?e)"),
67 rw!("beta"; "(app (lam ?v ?body) ?e)" =>
68 "(let ?v ?e ?body)"),
69
70 // substitution propagation
71 rw!("let-app"; "(let ?v ?e (app ?a ?b))" =>
72 "(app (let ?v ?e ?a) (let ?v ?e ?b))"),
73 rw!("let-add"; "(let ?v ?e (+ ?a ?b))" =>
74 "(+ (let ?v ?e ?a) (let ?v ?e ?b))"),
75 rw!("let-eq"; "(let ?v ?e (= ?a ?b))" =>
76 "(= (let ?v ?e ?a) (let ?v ?e ?b))"),
77 rw!("let-if"; "(let ?v ?e (if ?cond ?then ?else))" =>
78 "(if (let ?v ?e ?cond)
79 (let ?v ?e ?then)
80 (let ?v ?e ?else))"),
81
82 // substitution elimination
83 rw!("let-const"; "(let ?v ?e ?c)" => "?c"
84 if is_const(var("?c"))),
85 rw!("let-var-same"; "(let ?v1 ?e (var ?v1))" => "?e"),
86 rw!("let-var-diff"; "(let ?v1 ?e (var ?v2))" => "(var ?v2)"
87 if is_not_same_var(var("?v1"), var("?v2"))),
88 rw!("let-lam-same"; "(let ?v1 ?e (lam ?v1 ?body))" =>
89 "(lam ?v1 ?body)"),
90 rw!("let-lam-diff"; "(let ?v1 ?e (lam ?v2 ?body))" =>
91 ( CaptureAvoid {
92 fresh: var("?fresh"), v2: var("?v2"), e: var("?e"),
93 if_not_free: "(lam ?v2 (let ?v1 ?e ?body))"
94 .parse().unwrap(),
95 if_free: "(lam ?fresh (let ?v1 ?e
96 (let ?v2 (var ?fresh) ?body)))"
97 .parse().unwrap(),
98 })
99 if is_not_same_var(var("?v1"), var("?v2"))),

100 ]}

Figure 5.1: egg is generic over user-defined languages; here we define a language and rewrite
rules for a lambda calculus partial evaluator. The provided define_language! macro (lines 1-22)
allows the simple definition of a language as a Rust enum, automatically deriving parsing and
pre�y printing. A value of type Lambda is an e-node that holds either data that the user can
inspect or some number of e-class children (e-class Ids).
Rewrite rules can also be defined succinctly (lines 51-100). Pa�erns are parsed as s-expressions:
strings from the define_language! invocation (ex: fix, =, +) and data from the variants (ex:
false, 1) parse as operators or terms; names prefixed by “?” parse as pa�ern variables.
Some of the rewrites made are conditional using the “left => right if cond” syntax. The
if-elim rewrite on line 57 uses egg’s provided ConditionEqual as a condition, only applying
the right-hand side if the e-graph can prove the two argument pa�erns equivalent. The final
rewrite, let-lam-diff, is dynamic to support capture avoidance; the right-hand side is a Rust
value that implements the Applier trait instead of a pa�ern. Figure 5.2 contains the supporting
code for these rewrites.
We also show some of the tests (lines 27-50) from egg’s lambda test suite. The tests proceed by
inserting the term on the le�-hand side, running egg’s equality saturation, and then checking to
make sure the right-hand pa�ern can be found in the same e-class as the initial term.



44 Chapter 5. egg: Easy, Extensible, and Efficient E-graphs

• Orchestrating the read-phase, write-phase, rebuild system (Figure 3.1) that makes egg fast.

• Recording performance data at each iteration.

• Potentially coordinating rule execution so that expansive rules like associativity do not

dominate the e-graph.

• Finally, extracting the best expression(s) according to a user-de�ned cost function.

egg provides these functionalities through its Runner and Extractor interfaces. Runners

automatically detect saturation, and can be con�gured to stop after a time, e-graph size, or

iterations limit. The equality saturation loop provided by egg calls rebuild, so users need not

even know about egg’s deferred invariant maintenance. Runners record various metrics about

each iteration automatically, and the user can hook into this to report relevant data. Extractors

select the optimal term from an e-graph given a user-de�ned, local cost function.4 The two can

be combined as well; users commonly record the “best so far” expression by extracting in each

iteration.

Figure 5.1 also shows egg’s test_fn! macro for easily creating tests (lines 27-50). These tests

create an e-graph with the given expression, run equality saturation using a Runner, and check

to make sure the right-hand pattern can be found in the same e-class as the initial expression.

5.2 Extensibility

For simple domains, de�ning a language and purely syntactic rewrites will su�ce. However, our

partial evaluator requires interpreted reasoning, so we use some of egg’s more advanced features

4As mentioned in Section 4.3, extraction can be implemented as part of an e-class analysis. The separate Extractor
feature is still useful for ergonomic and performance reasons.
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like e-class analyses and dynamic rewrites. Importantly, egg supports these extensibility features

as a library: the user need not modify the e-graph or egg’s internals.

Figure 5.2 shows the remainder of the code for our lambda calculus partial evaluator. It uses

an e-class analysis (LambdaAnalysis) to track free variables and constants associated with each

e-class. The implementation of the e-class analysis is in Lines 11-50. The e-class analysis invariant

guarantees that the analysis data contains an over-approximation of free variables from terms

represented in that e-class. The analysis also does constant folding (see the make and modify

methods). The let-lam-diff rewrite (Line 90, Figure 5.1) uses the CaptureAvoid (Lines 81-100,

Figure 5.2) dynamic right-hand side to do capture-avoiding substitution only when necessary

based on the free variable information. The conditional rewrites from Figure 5.1 depend on the

conditions is_not_same_var and is_var (Lines 68-74, Figure 5.2) to ensure correct substitution.

egg is extensible in other ways as well. As mentioned above, Extractors are parameterized

by a user-provided cost function. Runners are also extensible with user-provided rule schedulers

that can control the behavior of potentially troublesome rewrites. In typical equality saturation,

each rewrite is searched for and applied each iteration. This can cause certain rewrites, commonly

associativity or distributivity, to dominate others and make the search space less productive.

Applied in moderation, these rewrites can trigger other rewrites and �nd greatly improved

expressions, but they can also slow the search by exploding the e-graph exponentially in size.

By default, egg uses the built-in backo� scheduler that identi�es rewrites that are matching in

exponentially-growing locations and temporarily bans them. We have observed that this greatly

reduced run time (producing the same results) in many settings. egg can also use a conventional

every-rule-every-time scheduler, or the user can supply their own.
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1 type EGraph = egg::EGraph<Lambda, LambdaAnalysis>;
2 struct LambdaAnalysis;
3 struct FC {
4 free: HashSet<Id>, // our analysis data stores free vars
5 constant: Option<Lambda>, // and the constant value, if any
6 }
7
8 // helper function to make pattern meta-variables
9 fn var(s: &str) -> Var { s.parse().unwrap() }

10
11 impl Analysis<Lambda> for LambdaAnalysis {
12 type Data = FC; // attach an FC to each eclass
13 // merge implements semilattice join by joining into ‘to‘
14 // returning true if the ‘to‘ data was modified
15 fn merge(&self, to: &mut FC, from: FC) -> bool {
16 let before_len = to.free.len();
17 // union the free variables
18 to.free.extend(from.free.iter().copied());
19 if to.constant.is_none() && from.constant.is_some() {
20 to.constant = from.constant;
21 true
22 } else {
23 before_len != to.free.len()
24 }
25 }
26
27 fn make(egraph: &EGraph, enode: &Lambda) -> FC {
28 let f = |i: &Id| egraph[*i].data.free.iter().copied();
29 let mut free = HashSet::default();
30 match enode {
31 Use(v) => { free.insert(*v); }
32 Let([v, a, b]) => {
33 free.extend(f(b)); free.remove(v); free.extend(f(a));
34 }
35 Lambda([v, b]) | Fix([v, b]) => {
36 free.extend(f(b)); free.remove(v);
37 }
38 _ => enode.for_each_child(
39 |c| free.extend(&egraph[c].data.free)),
40 }
41 FC { free: free, constant: eval(egraph, enode) }
42 }
43
44 fn modify(egraph: &mut EGraph, id: Id) {
45 if let Some(c) = egraph[id].data.constant.clone() {
46 let const_id = egraph.add(c);
47 egraph.union(id, const_id);
48 }
49 }
50 }

51 // evaluate an enode if the children have constants
52 // Rust’s ‘?‘ extracts an Option, early returning if None
53 fn eval(eg: &EGraph, enode: &Lambda) -> Option<Lambda> {
54 let c = |i: &Id| eg[*i].data.constant.clone();
55 match enode {
56 Num(_) | Bool(_) => Some(enode.clone()),
57 Add([x, y]) => Some(Num(c(x)? + c(y)?)),
58 Eq([x, y]) => Some(Bool(c(x)? == c(y)?)),
59 _ => None,
60 }
61 }
62
63 // Functions of this type can be conditions for rewrites
64 trait ConditionFn = Fn(&mut EGraph, Id, &Subst) -> bool;
65
66 // The following two functions return closures of the
67 // correct signature to be used as conditions in Figure 5.1.
68 fn is_not_same_var(v1: Var, v2: Var) -> impl ConditionFn {
69 |eg, _, subst| eg.find(subst[v1]) != eg.find(subst[v2])
70 }
71 fn is_const(v: Var) -> impl ConditionFn {
72 // check the LambdaAnalysis data
73 |eg, _, subst| eg[subst[v]].data.constant.is_some()
74 }
75
76 struct CaptureAvoid {
77 fresh: Var, v2: Var, e: Var,
78 if_not_free: Pattern<Lambda>, if_free: Pattern<Lambda>,
79 }
80
81 impl Applier<Lambda, LambdaAnalysis> for CaptureAvoid {
82 // Given the egraph, the matching eclass id, and the
83 // substitution generated by the match, apply the rewrite
84 fn apply_one(&self, egraph: &mut EGraph,
85 id: Id, subst: &Subst) -> Vec<Id>
86 {
87 let (v2, e) = (subst[self.v2], subst[self.e]);
88 let v2_free_in_e = egraph[e].data.free.contains(&v2);
89 if v2_free_in_e {
90 let mut subst = subst.clone();
91 // make a fresh symbol using the eclass id
92 let sym = Lambda::Symbol(format!("_{}", id).into());
93 subst.insert(self.fresh, egraph.add(sym));
94 // apply the given pattern with the modified subst
95 self.if_free.apply_one(egraph, id, &subst)
96 } else {
97 self.if_not_free.apply_one(egraph, id, &subst)
98 }
99 }

100 }

Figure 5.2: Our partial evaluator example highlights three important features egg provides for
extensibility: e-class analyses, conditional rewrites, and dynamic rewrites.
The LambdaAnalysis type, which implements the Analysis trait, represents the e-class anal-
ysis. Its associated data (FC) stores the constant term from that e-class (if any) and an over-
approximation of the free variables used by terms in that e-class. The constant term is used to
perform constant folding. The merge operation implements the semila�ice join, combining the
free variable sets and taking a constant if one exists. In make, the analysis computes the free
variable sets based on the e-node and the free variables of its children; the eval generates the
new constants if possible. The modify hook of Analysis adds the constant to the e-graph.
Some of the conditional rewrites in Figure 5.1 depend on conditions defined here. Any function
with the correct signature may serve as a condition.
The CaptureAvoid type implements the Applier trait, allowing it to serve as the right-hand
side of a rewrite. CaptureAvoid takes two pa�erns and some pa�ern variables. It checks the free
variable set to determine if a capture-avoiding substitution is required, applying the if_free
pa�ern if so and the if_not_free pa�ern otherwise.
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5.3 E�ciency

egg’s novel rebuilding algorithm (Chapter 3) combined with systems programming best practices

makes e-graphs—and the equality saturation use case in particular—more e�cient than prior tools.

egg is implemented in Rust, giving the compiler freedom to specialize and inline user-written

code. This is especially important as egg’s generic nature leads to tight interaction between library

code (e.g., searching for rewrites) and user code (e.g., comparing operators). egg is designed from

the ground up to use cache-friendly, �at bu�ers with minimal indirection for most internal data

structures. This is in sharp contrast to traditional representations of e-graphs [Nel80, DNS05] that

contains many tree- and linked list-like data structures. egg additionally compiles patterns to

be executed by a small virtual machine [dMB07], as opposed to recursively walking the tree-like

representation of patterns.

Aside from deferred rebuilding, egg’s equality saturation algorithm leads to implementation-

level performance enhancements. Searching for rewrite matches, which is the bulk of running

time, can be parallelized thanks to the phase separation. Either the rules or e-classes could be

searched in parallel. Furthermore, the once-per-iteration frequency of rebuilding allows egg to

establish other performance-enhancing invariants that hold during the read-only search phase.

For example, egg sorts e-nodes within each e-class to enable binary search, and also maintains a

cache mapping function symbols to e-classes that contain e-nodes with that function symbol.

Many of egg’s extensibility features can also be used to improve performance. As mentioned

above, rule scheduling can lead to great performance improvement in the face of “expansive” rules

that would otherwise dominate the search space. The Runner interface also supports user hooks

that can stop the equality saturation after some arbitrary condition. This can be useful when using

equality saturation to prove terms equal; once they are uni�ed, there is no point in continuing.

egg’s Runners also support batch simpli�cation, where multiple terms can be added to the initial



48 Chapter 5. egg: Easy, Extensible, and Efficient E-graphs

e-graph before running equality saturation. If the terms are substantially similar, both rewriting

and any e-class analyses will bene�t from the e-graph’s inherent structural deduplication. The

case study in Section 6.2 uses batch simpli�cation to achieve a large speedup with simplifying

similar expressions.



Chapter 6

Case Studies

This thesis makes the case that equality saturation (and egg in particular) is the right tool for

many program optimization and synthesis tasks. The preceding chapters have articulated the

technical novelties, practical features, and quantitative evidence that supports this claim. This

chapter provides qualitative evidence through case studies of independently-developed projects1

from diverse domains that incorporated egg.

Users have built program synthesizers, optimizers, and provers with egg across domains such

as �oating point accuracy, 3D CAD, deep learning, mutation testing, automatic vectorization,

and more. In many cases, the developers had �rst rolled their own e-graph implementations;

egg allowed them to delete code, gain performance, and in some cases dramatically broaden

the project’s scope thanks to egg’s speed and �exibility. In addition to gaining performance, all

projects use egg’s novel extensibility features like e-class analyses and dynamic rewrites.

1The case studies feature the following works:
Szalinski [NWA+20] Section 6.1 PLDI 2020 Nandi, Willsey, Anderson, Wilcox, Darulova, Grossman, Tatlock
Herbie [PSSWT15] Section 6.2 PLDI 2015 Panchekha, Sanchez-Stern, Wilcox, Tatlock
Tensat [YPW+21] Section 6.3 MLSys 2021 Yang, Phothilimtha, Wang, Willsey, Roy, Pienaar
Ruler [NWZ+21] Section 6.4 Under submission Nandi, Willsey, Zhu, Saiki, Wang, Anderson, Schulz, Grossman, Tatlock

49
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Figure 6.1: (Figure from Nandi et. al. [NWA+20]) Existing mesh decompilers turn triangle meshes
into flat, computational solid geometry (CSG) expressions. Szalinski [NWA+20] takes in these
CSG expressions in a format called Core Caddy, and it synthesizes smaller, structured programs in
language called Caddy that is enriched with functional-style features. This can ease customization
by simplifying edits: small, mostly local changes yield usefully di�erent models. The photo shows
the 3D printed hex wrench holder a�er customizing hole sizes. Szalinski is powered by egg’s
extensible equality saturation, relying on its high performance, e-class analyses, and dynamic
rewrites.

6.1 Szalinski: Decompiling CAD into Structured Programs

Several tools have emerged that reverse engineer high level Computer Aided Design (CAD) models

from polygon meshes and voxels [NWP+18, DPIP+18, TLS+19, SGL+17, ERSLT18]. The output of

these tools are constructive solid geometry (CSG) programs. A CSG program is comprised of 3D

solids like cubes, spheres, cylinders, a�ne transformations like scale, translate, rotate (which take

a 3D vector and a CSG expression as arguments), and binary operators like union, intersection,

and di�erence that combine CSG expressions. For repetitive models like a gear, CSG programs

can be too long and therefore di�cult to comprehend. A recent tool, Szalinski [NWA+20], extracts

the inherent structure in the CSG outputs of mesh decompilation tools by automatically inferring

maps and folds (Figure 6.1). Szalinski accomplished this using egg’s extensible equality saturation

system, allowing it to:
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• Discover structure using loop rerolling rules. This allows Szalinski to infer functional

patterns like Fold, Map2, Repeat and Tabulate from �at CSG inputs

• Identify equivalence among CAD terms that are expressed as di�erent expressions by mesh

decompilers. Szalinski accomplishes this by using CAD identities. An example of one such

CAD identity in Szalinski is 4 ↔ rotate [0 0 0] 4 . This implies that any CAD expression 4

is equivalent to a CAD expression that applies a rotation by zero degrees about x, y, and z

axes to 4

• Use external solvers to speculatively add potentially pro�table expressions to the e-graph.

Mesh decompilers often generate CSG expressions that order and/or group list elements in

non-intuitive ways. To recover structure from such expressions, a tool like Szalinski must

be able to reorder and regroup lists that expose any latent structure

6.1.1 Implementation

Even though CAD is di�erent from traditional languages targeted by programming language

techniques, egg supports Szalinski’s CAD language in a straightforward manner. Szalinski uses

purely syntactic rewrites to express CAD identities and some loop rerolling rules (like inferring

a Fold from a list of CAD expressions). Critically, however, Szalinski relies on egg’s dynamic

rewrites and e-class analysis to infer functions for lists.

Consider the �at CSG program in Figure 6.3b. A structure �nding rewrite �rst rewrites the �at

list of Unions to:

(Fold Union (Map2 Translate [(0 0 0) (2 0 0) ...] (Repeat Cube 5)))

The list of vectors is stored as Cons elements (sugared above for brevity). Szalinski uses an e-class
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(a) CAD model of ship’s wheel

( Union
( Cylinder [1, 5, 5])
( Fold Union
( Tabulate ( i 6)
( Rotate [0, 0, 60 * i]
( Translate [1, -0.5, 0]
( Cuboid [10, 1, 1]))))))

(b) Caddy program

( Union
( Cylinder [1,5])
( Union
( Rotate [0,0,0] ( Translate [1,-0.5,0] ( Cuboid [10,1,1])))
( Rotate [0,0,60] ( Translate [1,-0.5,0] ( Cuboid [10,1,1])))
( Rotate [0,0,120] ( Translate [1,-0.5,0] ( Cuboid [10,1,1])))
( Rotate [0,0,180] ( Translate [1,-0.5,0] ( Cuboid [10,1,1])))
( Rotate [0,0,240] ( Translate [1,-0.5,0] ( Cuboid [10,1,1])))
( Rotate [0,0,300] ( Translate [1,-0.5,0] ( Cuboid [10,1,1])))))

(c) Ideal Core Caddy expression that exposes structure

( Union
( Rotate [0,0,120] ( Translate [1,-0.5,0] ( Cuboid [10,1,1])))
( Scale [10,1,1] ( Translate [0.1,-0.5,1] ( Cuboid [1,1,1])))
( Rotate [0,0,300] ( Translate [1,-0.5,0] ( Cuboid [10,1,1])))
( Scale [5,5,1] ( Cylinder [1,1]))
( Translate [-1,0.5,0] ( Scale [-1,-1,1] ( Cuboid [10,1,1])))
( Rotate [0,0,240] ( Translate [1,-0.5,0] ( Cuboid [10,1,1])))
( Rotate [0,0,60] ( Translate [1,-0.5,0] ( Cuboid [10,1,1]))))

(d) Equivalent Core Caddy expression that obfuscates structure

Figure 6.2: (a) CAD model for a ship’s wheel. (b) Caddy features like Tabulate express repeated de-
sign components. Such repetition can be obvious in Core Caddy (c), but existing mesh decompilers
obfuscate structure (d).
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(a) Five cubes in a line.

(Union
(Translate (0 0 0) Cube)
(Translate (2 0 0) Cube)
(Translate (4 0 0) Cube)
(Translate (6 0 0) Cube)
(Translate (8 0 0) Cube))

(b) Flat CSG input to Szalinski.

(Fold Union
(Tabulate (i 5)

(Translate
((* 2 i) 0 0)
Cube)))

(c) Output captures the repetition.

Figure 6.3: Szalinski integrates solvers into egg’s equality saturation as a dynamic rewrite. The
solver-backed rewrites can transform repetitive lists into Tabulate expressions that capture the
repetitive structure.

analysis to track the accumulated lists in a similar style to constant folding. Then, a dynamic

rewrite uses an arithmetic solver to rewrite the concrete list of 3D vectors in the analysis data to

(Tabulate (i 5) (* 2 i)). A �nal set of syntactic rewrites can hoist the Tabulate, yielding

the result on the right of Figure 6.3. Thanks to the set of syntactic CAD rewrites, this structure

�nding even works in the face of CAD identities. For example, the original program may omit the

no-op Translate (0 0 0), even though it is necessary to see repetitive structure.

6.1.2 Inverse Transformations

In many cases, the repetitive structure of input CSG expression is further obfuscated because

subexpressions may appear in arbitrary order. For these inputs, the arithmetic solvers must �rst

reorder the expressions to �nd a closed form like a Tabulate as shown in Figure 6.3. However,

reordering a list does not preserve equivalence, so adding it to the e-class of the concrete list

would be unsound. Szalinski therefore introduces inverse transformations, a novel technique

that allows solvers to speculatively reorder and regroup list elements to �nd a closed form. The

solvers annotate the potentially pro�table expression with the permutation or grouping that led

to the successful discovery of the closed form. Later in the rewriting process, syntactic rewrites

eliminate the inverse transformations when possible (e.g., reordering lists under a Fold Union
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can be eliminated). egg supported this novel technique without modi�cation.

6.1.3 Results

Szalinski’s initial protoype used a custom e-graph written in OCaml. Anecdotally, switching to

egg removed most of the code, eliminated bugs, facilitated the key contributions of solver-backed

rewrites and inverse transformations, and made the tool about 1000× faster. egg’s performance

allowed a shift from running on small, hand-picked examples to a comprehensive evaluation on

over 2000 real-world models from a 3D model sharing forum [NWA+20].
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6.2 Herbie: Improving Floating Point Accuracy

Herbie automatically improves accuracy for �oating-point expressions, using random sampling

to measure error, a set of rewrite rules for generating program variants, and algorithms that

prune and combine program variants to achieve minimal error. Herbie received PLDI 2015’s

Distinguished Paper award [PSSWT15] and has been continuously developed since then, sporting

hundreds of Github stars, hundreds of downloads, and thousands of users on its online version.

Herbie uses e-graphs for algebraic simpli�cation of mathematical expressions, which is especially

important for avoiding �oating-point errors introduced by cancellation, function inverses, and

redundant computation.

Until our case study, Herbie used a custom e-graph implementation written in Racket (Herbie’s

implementation language) that closely followed traditional e-graph implementations. With time-

outs disabled, e-graph-based simpli�cation consumed the vast majority of Herbie’s run time. As a

�x, Herbie sharply limits the simpli�cation process, placing a size limit on the e-graph itself and a

time limit on the whole procedure. When the timeout is exceeded, simpli�cation fails altogether.

Furthermore, the Herbie authors knew of several features that they believed would improve

Herbie’s output but could not be implemented because they required more calls to simpli�cation

and would thus introduce unacceptable slowdowns. Taken together, slow simpli�cation reduced

Herbie’s performance, completeness, and e�cacy.

We implemented a egg simpli�cation backend for Herbie. The egg backend is over 3000×

faster than Herbie’s initial simpli�er and is now used by default as of Herbie 1.4. Herbie has

also backported some of egg’s features like batch simpli�cation and rebuilding to its e-graph

implementation (which is still usable, just not the default), demonstrating the portability of egg’s

conceptual improvements.
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6.2.1 Implementation

Herbie is implemented in Racket while egg is in Rust; the egg simpli�cation backend is thus

implemented as a Rust library that provides a C-level API for Herbie to access via foreign-function

interface (FFI). The Rust library de�nes the Herbie expression grammar (with named constants,

numeric constants, variables, and operations) as well as the e-class analysis necessary to do

constant folding. The library is implemented in under 500 lines of Rust.

Herbie’s set of rewrite rules is not �xed; users can select which rewrites to use using command-

line �ags. Herbie serializes the rewrites to strings, and the egg backend parses and instantiates

them on the Rust side.

Herbie separates exact and inexact program constants: exact operations on exact constants

(such as the addition of two rational numbers) are evaluated and added to the e-graph, while

operations on inexact constants or that yield inexact outputs are not. We thus split numeric

constants in the Rust-side grammar between exact rational numbers and inexact constants, which

are described by an opaque identi�er, and transformed Racket-side expressions into this form

before serializing them and passing them to the Rust driver. To evaluate operations on exact

constants, we used the constant folding e-class analysis to track the “exact value” of each e-class.2

Every time an operation e-node is added to the egg e-graph, we check whether all arguments to

that operation have exact value (using the analysis data), and if so do rational number arithmetic to

evaluate it. The e-class analysis is cleaner than the corresponding code in Herbie’s implementation,

which is a built-in pass over the entire e-graph.
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Figure 6.4: Herbie sped up its expression simplification phase by adopting egg-inspired features
like batched simplification and rebuilding into its Racket-based e-graph implementation. Herbie
also supports using egg itself for additional speedup. Note that the y-axis is log-scale.

6.2.2 Results

Our egg simpli�cation backend is a drop-in replacement to the existing Herbie simpli�er, making

it easy to compare speed and results. We compare using Herbie’s standard test suite of roughly 500

benchmarks, with timeouts disabled. Figure 6.4 shows the results. The egg simpli�cation backend

is over 3000× faster than Herbie’s initial simpli�er. This speedup eliminated Herbie’s largest

bottleneck: the initial implementation dominated Herbie’s total run time at 98.1%, backporting

egg improvements into Herbie cuts that to about half the total run time, and egg simpli�cation

takes under 5% of the total run time. Practically, the run time of Herbie’s initial implementation

was smaller, since timeouts cause tests failures when simpli�cation takes too long. Therefore, the

speedup also improved Herbie’s completeness, as simpli�cation now never times out.

2Herbie’s rewrite rules guarantee that di�erent exact values can never become equal; the semilattice join checks
this invariant on the Rust side.
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Since incorporating egg into Herbie, the Herbie developers have backported some of egg’s key

performance improvements into the Racket e-graph implementation. First, batch simpli�cation

gives a large speedup because Herbie simpli�es many similar expressions. When done simulta-

neously in one equality saturation, the e-graph’s structural sharing can massively deduplicate

work. Second, deferring rebuilding (as discussed in Chapter 3) gives a further 2.2× speedup.

As demonstrated in Figure 3.4, rebuilding o�ers an asymptotic speedup, so Herbie’s improved

implementation (and the egg backend as well) will scale better as the search size grows.
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6.3 Tensat: OptimizingDeepLearningComputationGraphs

Deep learning frameworks and compilers (e.g., Tensor�ow [ABC+16], PyTorch [PGM+19], XLA [Goo17],

TensorRT [NVI], TVM [CMJ+18], MLIR [LAB+20]) have enabled diverse kinds of machine learn-

ing models to run e�ciently on numerous compute platforms. Neural network models in these

frameworks are typically represented as tensor computation graphs. To improve the runtime

performance of a tensor graph, these frameworks perform various optimizations.

One of the most important optimizations is graph rewriting, which takes in a tensor graph 6

and a set of semantics-preserving graph rewrites ', and by applying rewrites to 6 seeks to �nd an

semantically equivalent 6′ with lower cost according to some cost model. The current industry-

standard approach adopted by most frameworks is to use a manually curated set of rewrite rules

and rely on a heuristic strategy to determine the order in which to apply the rewrite rules. However,

this approach often leads to sub-optimal results both due to the non-comprehensive set of rewrite

rules, as well as the sub-optimal graph substitution heuristic [JPT+19, JTW+19].

This case study aims to address the sub-optimality problem of graph rewrite strategies, while

leveraging the existing rewrite rules generation technique [JPT+19]. Prior research has shown

that searching for sequences of substitutions [JPT+19, JTW+19, FSWC20] outperforms heuristic

approaches. However, both heuristic and search-based solutions rely on sequential application of

substitutions. Since rewrites often depend on or enable one another, optimization depends heavily

on the order in which rewrites are applied; the “phase ordering” problem strikes again.

This case study presents Tensat, a tensor graph superoptimization framework that employs

equality saturation [TSTL09, STL11, WWF+20], to apply all possible rewrites at once. Tensat

splits program optimization into two phases: exploration and extraction. The exploration phase is

equality saturation using egg as usual. Tensat’s extraction phase is totally custom; simple cost

functions simply do not su�ce for extracting e�cient deep learning compute graphs. Instead,
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Search time (s) Runtime speedup (%)
TASO Tensat TASO Tensat

BERT 13.6 1.4 8.5 9.2
ResNeXt-50 25.3 0.7 5.5 8.8
NasNet-A 1226 10.6 1.9 7.3
NasRNN 177.3 0.5 45.4 68.9

Inception-v3 68.6 5.1 6.3 10.0
SqueezeNet 16.4 0.3 6.7 24.5

VGG-19 8.9 0.4 8.9 8.9

Table 6.1: Comparison of optimization time and runtime speedup of the optimized computation
graphs over the original graphs, TASO [JPT+19] v.s. Tensat.

Tensat employs an Integer Linear Programming (ILP) extraction solution, which requires a novel

method to �lter out invalid subgraphs from an e-graph.

We evaluated Tensat on a number of well-known machine learning models executing on a

GPU. As highlighted in Table 6.1, Tensat can synthesize optimized graphs that are up to 23% faster

in runtime than state-of-the-art [JPT+19], while reducing the optimization time by up to 300x. By

having the e-graph compactly representing an exponential number of equivalent graphs, Tensat

is able to cover a larger search space more e�ciently than the sequential search methods. As a

result, our search approach is both extremely e�ective and fast enough to be used as part of a

normal complation �ow.

6.3.1 Representation

This section describes how Tensat represents tensor computation graphs and rewrite rules.

Representing Tensor Computation Graphs We use a representation based on the one in

TASO [JPT+19], with modi�cations to make it suitable for equality saturation. Table 6.2 shows

the set of operators we consider. Each operator >8 corresponds to a node =8 in the graph; the node

represents the output tensor of the operator. The nodes corresponding to the inputs of >8 are the
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children nodes of =8 . Each tensor computation graph is a DAG under this representation.

The formulations in equality saturation become simpler if a graph is single-rooted. Therefore,

we combine all the �nal output nodes of a graph with no-ops to make the graph single-rooted.

The no-op nodes do not have any actual operators associated with them, and they will not be

altered during the exploration phase, so there are no side e�ects.

Representing Rewrite Rules A rewrite rule for tensor computation graph speci�es that some

local subgraph pattern (source pattern) is equivalent to another subgraph pattern (target pattern).

The input tensors to the source and target patterns are variable nodes, which can be substituted

with any concrete nodes (or e-class in equality saturation) in the current graph. Each output tensor

in the source pattern corresponds to an output tensor in the target pattern. The two corresponding

output nodes are called a pair of matched outputs. A rewrite rule states the equivalence between

each pair of matched outputs.

We represent each source (and target) pattern using symbolic expressions (S-exprs) with

variables. Patterns with a single output is represented with an S-expr rooted on the output.

Rewrite rules with such patterns are called single-pattern rewrite rules. Patterns with multiple

outputs are represented as a list of S-exprs rooted on each output. Rewrite rules with multiple

matched outputs are called multi-pattern rewrite rules.

6.3.2 Exploration Phase

We initialize the e-graph with the original tensor computation graph. In each iteration of the

exploration phase, we search for matches of all rewrite rules in the current e-graph, and add the

target patterns and equivalence relations to the e-graph. This process continues until either the

e-graph saturates or a user-speci�ed limit (in terms of time, e-graph size, or number of iterations)

is reached. Before applying a rewrite at a found match, we perform a shape checking to verify if



62 Chapter 6. Case Studies

the tensor shapes in the target pattern are compatible. This is necessary since some rewrite rules

requires input tensor shapes to satisfy speci�c preconditions, in addition to the syntactic match.

We perform shape checking in the same way as TASO [JPT+19].

6.3.3 Extraction Phase

During extraction, the goal is to pick one e-node from each e-class in the e-graph to obtain an

optimized graph. The optimized graph should minimize the total cost with respect to a given cost

model. In tensor graph superoptimization, the cost model re�ects the inference time taken by the

graph.

Cost model We use the same cost model as TASO [JPT+19]. Each operator has a separate and

independent cost, which is the measured runtime of that operator (with the speci�c input sizes and

parameters) on hardware. The total cost of a graph is the sum of costs of each of its nodes. This

cost model is suitable for GPUs, since GPUs typically run one operator at a time when executing

a graph. Note that an operator can be a fused operator, consisting of multiple primitive operators,

such as a fused convolution and ReLU.

Greedy extraction We �rst experiment with a greedy extraction strategy that has been shown

to be e�ective for certain domains [PSSWT15, WHL+20, WWF+20]. For each e-class, the greedy

strategy computes the total cost of the subtrees rooted on each of the e-nodes, and picks the

e-node with the smallest subtree cost.

Greedy extraction is not guaranteed to extract the graph with the minimum cost, even under

our independent cost model. For example, if two children of an e-node share a subgraph, greedy

extraction would ignore the sharing and overestimate the cost.



6.3. Tensat: Optimizing Deep Learning Computation Graphs 63

ILP extraction The second approach we experiment with is formulating the extraction problem

as an Integer Linear Program (ILP).

Let 8 = 0, ..., # − 1 be the set of e-nodes in the e-graph. Let < = 0, ..., " − 1 be the set of

e-classes in the e-graph. Let 4< denote the set of e-nodes within e-class <: {8 |8 ∈ 4<}. Let ℎ8

denote the set of children e-classes for e-node 8 . Let 6(8) denote the e-class of e-node 8 , i.e. 8 ∈ 46(8) .

Let< = 0 be the root e-class. Each e-node is associated with a cost 28 .

We then formulate our problem as follows:

Minimize: 5 (G) =
∑
8

28G8

Subject to:

G8 ∈ {0, 1}, (6.1)∑
8∈40

G8 = 1, (6.2)

∀8,∀< ∈ ℎ8, G8 ≤
∑
9∈4<

G 9 , (6.3)

∀8,∀< ∈ ℎ8, C6(8) − C< − n +�(1 − G8) ≥ 0, (6.4)

∀<, 0 ≤ C< ≤ 1, (6.5)

Here we introduce a binary integer variable G8 for each e-node 8; node 8 is selected if G8 = 1,

and not selected otherwise. Constraint (2) ensures that one node is picked in the root e-class.

Constraint (3) ensures that if a node is picked, then at least one node in each of its children

e-classes needs to be picked. We rely on the fact that at the optimal solution, each e-class can have

at most one picked node (otherwise we can remove more picked nodes in this e-class to reduce

the objective while still satisfying all the constraints). Constraints (1)–(3) and the objective encode
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the main extraction logic.

A more subtle requirement on the extraction phase is that the extracted graph cannot contain

cycles. While the e-graph can (and likely will) contain cycles, the extracted graph is meant to

map directly to an executable tensor DAG. The extraction procedure must therefore take care to

respect the acyclic invariant of DAGs.

To ensure the extracted graph does not contain cycles, we introduce a real variable C< for each

e-class< in the ILP. Constraint (4) ensures that the order de�ned by C<’s is a valid topological

order for the extracted graph. Here n < 1/" is a small constant for e�ectively encoding strict

inequalities in ILP. � is a large enough constant such that � > 1 + n . Constraint (5) is to limit the

range for the topological order variables C<’s.

We also experiment with using integer variables for C<’s. In this case, C<’s are constrained

to take integer values between 0 to " − 1. Constraint (4) changes accordingly to: ∀8,∀< ∈

ℎ8, C6(8) − C< +�(1 − G8) ≥ 1, where � ≥ " .

Unlike greedy extraction, the optimal solution to the ILP is guaranteed to give a valid graph

(no cycles) with the lowest cost.

Cycle Filtering Similar to previous work that uses ILP extraction [TSTL09, WHL+20], we �nd

that as the size of the e-graph grows bigger, the ILP solver takes a long time and becomes the main

bottleneck. This is mainly due to the cycle constraint (4): ILP solver struggles to �nd a feasible

solution with these constraints. Therefore, we explore an alternative approach by �ltering cycles

during the exploration phase to make sure that the e-graph does not contain any cycles at the end

of the exploration phase. This way, we can get rid of the cycle constraints in the ILP.

Vanilla cycle �ltering The �rst method is to check if applying a substitution introduces cycles

to the e-graph, and discard such a substitution. This check is run every time before applying a
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substitution. Each check requires a pass over the entire e-graph. For one iteration during the

exploration phase, if we denote # as the current size of the e-graph and =< as the total number

of matches of the rewrite rules on the e-graph, then this vanilla cycle �ltering has complexity

O(=<# ).

E�cient cycle �ltering As the number of matches =< is typically large and scales with # ,

vanilla cycle �ltering can be slow. We therefore design a novel and more e�cient cycle �ltering

algorithm, consisting of a pre-�ltering step and a post-processing step. Algorithm 1 shows the

pseudocode for the exploration phase with e�cient cycle �ltering.

At the start of each iteration, we do one pass over the e-graph to record the set of descendent

e-classes for each e-node (stored in a descendants map). During the iteration, for each match of

the rewrite rules, we use the pre-stored descendants map to check if applying a rewrite introduces

cycles to the e-graph; if so, we skip this match. Line 3–9 implements the pre-�ltering step. Notice

that this check is sound but not complete: a match that passes this check can still introduce cycles

to the e-graph. This is because new descendants relations introduced by the previous rewrite in

this iteration are not included in the pre-stored descendants map.

To resolve the cycles we missed in the pre-�ltering step, we add a post-processing step at the

end of each iteration (line 10-18). We make a pass over the e-graph in DFS order and collect a

set of cycles in the e-graph. For each cycle, we choose the last node that is added to the e-graph,

and add that node to a �lter list. The nodes in the �lter list are considered as removed from

the e-graph. We make sure those nodes are not picked during extraction by explicitly adding

constraints ∀8 ∈ ;, G8 = 0 to the ILP.

By constructing a descendants map once before each iteration, each of the checking in the

pre-�ltering step takes constant time. The worst case complexity of the post-processing step is

O(=2# ), where =2 is the number of cycles in the e-graph. Since =2 is typically much smaller than
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Algorithm 1 Exploration phase with e�cient cycle �ltering
Input: starting e-graph G, set of rewrite rules R.
Output: updated e-graph G, �lter list ;

1: ; = {}
2: for iter = 0, . . . , MAX_ITER do
3: descendants map 3 = GetDescendants(G, ;)
4: matches = Search(G,R, ;)
5: for match ∈ matches do
6: if not WillCreateCycle(match, 3) then
7: Apply(G, match)
8: end if
9: end for

10: while true do
11: cycles = DfsGetCycles(G, ;)
12: if len(cycles) == 0 then
13: break
14: end if
15: for cycle ∈ cycles do
16: ResolveCycle(G, ; , cycle)
17: end for
18: end while
19: end for
20: return G, ;

=< , this algorithm is much faster than the vanilla cycle �ltering. In practice, each DFS pass over

the e-graph can �nd many cycles, which makes O(=2# ) a very conservative upper bound.

6.3.4 Evaluation

We implemented Tensat in Rust [Rus] using egg [WWF+20]. For the extraction phase, we use

SCIP [GAB+20] as the ILP solver, wrapped by Google OR-tools [PF].

We utilize egg’s e-class analysis feature for the shape checking discussed. An e-class analysis

associates data with each e-class to support rewrites that are not purely syntactic. We store all the

relevant information of the tensors (shape, layout, split locations) in the analysis data and use

these information for shape checking.
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Experimental Setup We compareed Tensat with TASO [JPT+19] to evaluate our equality satu-

ration based search. We used the same set of rewrite rules as TASO for our experiments. We eval-

uated on the inference graphs of 7 models: BERT [DCLT19], ResNeXt-50 [XGD+17], NasNet-A

[ZVSL18],NasRNN [ZL17], Inception-v3 [SVI+16],VGG-19 [LD15], and SqueezeNet [IMA+17].

This benchmark set covers a wide range of commonly used state-of-the-art models, including both

models for computer vision tasks and models for NLP tasks, both human-designed models and

automatically-discovered models by neural architecture search. We performed all experiments on

a Google Cloud instance with one NVIDIA Tesla T4 GPU, a 16-core CPU, and 60 GB of memory.

For Tensat, our full approach uses the e�cient cycle �ltering algorithm (Section 6.3.3) during the

exploration phase and the ILP method without the cycle constraints (Section 6.3.3) for extraction.

We set a limit on the number of nodes in the e-graph #max = 50000 and the number of iterations

for exploration :max = 15. We terminate the exploration phase when any of the limit is reached,

or the e-graph is saturated. We set a separate limit :multi on the number of iterations to apply

the multi-pattern rules. We use a default of :multi = 1 for the main results in Section 6.3.4 and

Section 6.3.4. We set a timeout of 1 hour for the ILP solver.

For TASO’s backtracking search, we use their default settings from their artifact evaluation

code on the number of iterations3 = = 100 and the hyperparameter U = 1.0 for each benchmark.

We also test U = 1.05 as mentioned in their paper, and �nd that the di�erence is tiny (di�erence in

speedup percentage is less than 0.1% on average over the benchmarks). Increasing to = = 1000

leads to less than 1% speedup gain with the cost of over 11x longer in optimization time on average.

Program Speedup We compare the speedup percentage of the optimized graph with respect

to the original graph between Tensat and TASO. We use TASO’s cuDNN backend to measure

the runtime of the full computation graphs. Figure 6.5 shows the results. We can see that Tensat

3The number of iterations of the outer loop, see Algorithm 2 in [JPT+19] for more details
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Figure 6.5: Speedup percentage of the optimized graph with respect to the original graph, TASO
v.s. Tensat. Each se�ing (optimizer × benchmark) is run for five times, and we plot the mean and
standard error for the measurements.
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Figure 6.6: Comparison of the optimization time (log scale) between TASO and Tensat. “TASO
total” is the total time of TASO search. “TASO best” indicates when TASO found its best result;
achieving this time would require an oracle telling it when to stop.
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discovers better optimized graphs compared with TASO’s backtracking search in most benchmarks.

Tensat’s optimized graphs are on average 6.6% faster than TASO’s. We see the biggest speedup

of 23% over TASO on NasRNN. Note that for Inception-v3, Tensat with :multi = 1 gives a smaller

speedup than TASO, but increasing :multi to 2 achieves a better speedup than TASO while still

being 13.4× faster than TASO’s search (see Figure 6.6).

This improvement comes from the fact that equality saturation covers a much larger space of

equivalent graphs than sequential backtracking search. By using e-graph as a compact representa-

tion of an exponential number of equivalent graphs, Tensat is able to cover orders of magnitude

more equivalent graphs than TASO.

Optimization Time Another important metric is the time taken by the optimizer itself. For

Tensat, this is the sum of time taken by the exploration phase and the extraction phase. For TASO,

we record two times for a single backtracking search. The �rst is the total time of the backtracking

search with the default number of iterations ()total). The second one is the time taken to �rst

reach the best graph found during its search ()best). )best is the best possible time for TASO’s

sequential backtracking search. In practice, it is di�cult (if not impossible) to achieve )best since

the sequential search algorithm would have no way to know that it can stop at that point.

Figure 6.6 shows the time taken by the optimizers across benchmarks. We can see that Tensat

runs 9.5x to 379x faster than TASO’s )total, and 1.8x to 260x times faster than )best. This shows

that Tensat can not only cover a much larger search space, but also achieve this in drastically less

time. Furthermore, Tensat’s optimization time is small enough that we believe our approach can

be integrated into a default compilation �ow instead of running the search as an additional o�ine

autotuning process.
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Types
) Tensor )) Tensor tuple , Weights tensor Bh, Bw stride (height, width)
= natural number ? padding 0 activation :h, :w kernel (height, width)

Operator Description Type signature
ewadd Element-wise addition (),) ) → )

ewmul Element-wise multiplication (),) ) → )

matmul Matrix multiplication (0,) ,) ) → )

conv 0 Grouped convolution (Bh, Bw, ?, 0,) ,, ) → )

relu Relu activation ) → )

tanh Tanh activation ) → )

sigmoid Sigmoid activation ) → )

poolmax Max pooling (), :h, :w, Bh, Bw, ?, 0) → )

poolavg Average pooling (), :h, :w, Bh, Bw, ?, 0) → )

transpose 1 Transpose (), permutation) → )

enlarge 2 Pad a convolution kernel with zeros (),)ref) → )

concat= Concatenate along the given axis (=,) , . . . ,) ) → )

split 3 Split a tensor into two along the axis (=,) ) → ))

split0 Get the �rst output from split )) → )

split1 Get the second output from split )) → )

merge 4 Update weight to merge grouped conv (,,=) →,

reshape Reshape tensor (), shape) → )

input Input tensor identifier→ )

weight Weight tensor identifier→ )

no-op Combine the outputs of the graph (),) ) → )

Table 6.2: Operators supported by Tensat. There are four types for the nodes in our representation:
tensor type (T), string type (S), integer type (N), and tensor tuple type (TT). The integer type
is used to represent parameters of the operators, such as stride, axis, and also padding and
activation modes (by representing di�erent modes using di�erent integers). The more complex,
variable-length parameters (e.g. shape, axes permutation) are represented using the string type
according to the specified formats.

0 Same representation as TASO [JPT+19]. Normal and depth-wise convolutions are special cases of grouped convolu-
tions.
1 Axis permutation for transpose is specified using a string with format: axis1_axis2_. . . .
2 Pad a convolution kernel (input) with zeros to make it the same size as input )ref
3 Split the tensor in the given axis. The position of the split is at the place of the most recent concat.
4 Merge every count number of groups in the grouped convolution. See TASO [JPT+19] for more details.
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match e {
 | const   => const
 | var (v) => lookup (v)
 | e1 + e2 => eval (e1) + eval(e2)
 | e1 * e2 => eval (e1) * eval(e2)
  …
}

x + 0 = x
x * 1 = x
x - 0 = x
x / 1 = x

x + y = y + x
x + (y + z) = (x + y) + z
x * (y * z) = (x * y) * z

Ruler Framework

Term Enumeration 
Modulo  

Equivalence

Rewrites 

Grammar

Interpreter 

SMT / model check / fuzz

Validator 

Candidate Rule 
Generation Rule Selection

e    x, 0, e + e, e * e, …<latexit sha1_base64="z9by1rgoehHcfcW7bBnx2a+uMlQ=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUApC0YvHitYW2lA22027dLMJuxOhhP4ELx4UxKt/yJv/xm2bg7Y+GHi8N8PMvCCRwqDrfjuFldW19Y3iZmlre2d3r7x/8GjiVDPeZLGMdTughkuheBMFSt5ONKdRIHkrGN1M/dYT10bE6gHHCfcjOlAiFIyile5rtateueJW3RnIMvFyUoEcjV75q9uPWRpxhUxSYzqem6CfUY2CST4pdVPDE8pGdMA7lioaceNns1Mn5MQqfRLG2pZCMlN/T2Q0MmYcBbYzojg0i95U/M/rpBhe+plQSYpcsfmiMJUEYzL9m/SF5gzl2BLKtLC3EjakmjK06ZRsCN7iy8ukdVb1zqued3deqV/neRThCI7hFDy4gDrcQgOawGAAz/AKb450Xpx352PeWnDymUP4A+fzBx1/jYI=</latexit>::=

Figure 6.7: Ruler Workflow. Given a grammar and interpreter for a target domain, Ruler uses
e-graphs and equality saturation to e�iciently enumerate potential rewrite rules and iteratively
select a small set of general, orthogonal rules. Ruler supports various validation strategies to
ensure soundness and speed up synthesis, including constraint solving (e.g., SMT), model checking,
and fuzzing.

6.4 Ruler: Rewrite Synthesis using Equality Saturation

Many compilers, program synthesizers, and theorem provers rely on rewrite systems [PJTH01,

HA00, DNS05]. For example, rewriting is essential for improving program analyses and code

generation [Bli13, LAB+20, RKBA+13, CMJ+18] and for automating veri�cation [BCD+11, DMB08,

NWP02, BC10]. Without rule-based simpli�cation, Halide-generated code can su�er 26× slow-

down [NJK+20] and the Herbie �oating-point synthesizer [PSSWT15] can return 10× larger

programs.

Where do the rewrite rules come from? Several noteworthy projects have developed tool-

speci�c techniques for checking or inferring rules [BA06, MN17, JNR02, SSL16], but implementing

a rewrite system still generally requires domain experts to �rst manually develop rulesets by trial

and error. Such slow, ad hoc, and error-prone approaches hinder design space exploration for new

domains and discourage updating existing systems.

To address these challenges, we propose a simple, domain-general approach that uses equality

saturation [TSTL09, WWF+20] as a rewrite system on the domain of rewrite rules themselves to
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quickly synthesize e�ective rulesets.

In the past, tool-speci�c techniques to iteratively infer rewrite rules have implicitly adopted a

common three-step approach, each constructing or maintaining a set:

1. Enumerate terms from the given domain to build the term set ) .

2. Select candidate rules from ) ×) to build the candidate set � .

3. Filter � to select a sound set of useful rules to build the rule set '.

We identify and abstract this work�ow to provide generic rule inference for user-speci�ed domains.

Our key insight is that what makes equality saturation successful in rewrite rule application is

also useful for rule inference. Equality saturation can simultaneously prove many pairs of terms

equivalent with respect to a given ruleset. Ruler uses equality saturation to shrink the set ) of

enumerated terms (lowering candidate generation cost) by merging terms equivalent under ',

and to shrink the set � of candidate rules (lowering candidate selection cost) by removing rules

derivable by '. Thus, Ruler uses the set ' of rewrite rules to rewrite the next batch of candidate

rewrite rules even as ' is being synthesized.

We prototyped these insights in a tool dubbed Ruler (Figure 6.7). Compared to a state-of-the-

art rule synthesizer [NRB+19] built into the CVC4 theorem prover [BCD+11], Ruler synthesizes

smaller rulesets in less time without reducing the set of derivable equivalences. We demonstrate

how Ruler can generate expert-quality rulesets by using it to replace all of Herbie’s rules for

rational numbers, uncovering missing rules that resolved a known bug in Herbie.

This case study’s contributions include:

• A novel rule synthesis algorithm that uses e-graphs [Nel80] to compactly encode large sets

of terms and equality saturation to e�ciently �lter and minimize rulesets (Section 6.4.1).
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• A generic implementation of this algorithm within the Ruler rewrite rule inference frame-

work that synthesizes rules for user-speci�ed domains given a grammar and its interpreter.

• A comparison against a recent CVC4-based rule synthesizer that shows Ruler synthesizes

5.8× smaller rulesets 25× faster without compromising the deriving power of the rulesets.

• A case study demonstrating that, in an end-to-end application of a real world tool, Ruler’s

automatically generated rulesets are as good as manually-crafted expert rules (Section 6.4.4).

We implemented Ruler in Rust using egg [WWF+20] for equality saturation. egg’s �exibility

allows Ruler to be relatively simple: its core consists of under 1,000 lines of code, allowing it to be

simple, extensible, and generic over domains. Compared to the rewrite synthesis tool inside the

CVC4 solver [BCD+11, NRB+19], Ruler is an order of magnitude smaller.

6.4.1 Ruler’s Algorithm

Like other rule synthesis approaches, Ruler iteratively performs three steps:

1. Enumerate terms into a set ) .

2. Search ) ×) for a set of candidate equalities � .

3. Choose a useful, valid subset of � to add to the ruleset '.

Ruler’s core insight is that e-graphs and equality saturation can help compactly represent the

sets ) , � , and ', leading to a faster synthesis procedure that produces smaller rulesets ' with

greater proving power.

Figure 6.8 shows Ruler’s core synthesis algorithm, which is parameterized by the following:

• The number of iterations to perform the search for (line 4);
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1 def ruler (iterations):
2 ) = empty_egraph()
3 ' = {}
4 for 8 ∈ [0, iterations]:
5 # add new terms directly to the e−graph representing )
6 add_terms(), 8)
7 loop:
8 # combine e−classes in the e−graph representing ) that ' proves equivalent
9 run_rewrites(), ')

10 � = cvec_match())
11 if � = {}:
12 break
13 # choose_eqs only returns valid candidates by using ’is_valid’ internally
14 ' = ' ∪ choose_eqs(', �)
15 return '

Figure 6.8: Ruler’s Core Algorithm. The iterations parameter determines the maximum number
of connectives in the terms Ruler will enumerate.

• The language grammar, given in the form of a term enumerator (add_terms, line 6), which

takes the number of variables or constants to enumerate over;

• The procedure for validating candidate rules, is_valid (called inside choose_eqs, Figure 6.9 line

20).

These parameters provide �exibility for supporting di�erent domains, making Ruler a rule

synthesis framework rather than a single one-size-�ts-all tool.

Ruler uses an e-graph to compactly represent the set of terms ) . In each iteration, Ruler �rst

extends the set) with additional terms from the target language. Each term C ∈ ) is tagged with a

characteristic vector (cvec) that stores the result of evaluating C given many di�erent assignments

of values to variables.

After enumerating terms, Ruler uses equality saturation (run_rewrites) to merge terms in ) that

can be proved equivalent by the rewrite rules already discovered (in the set ');



6.4. Ruler: Rewrite Synthesis using Eqality Saturation 75

Next, Ruler computes a set� of candidate rules (cvec_match). It �nds pairs (C1, C2) ∈ ) ×) where

C1 and C2 are from distinct e-classes but have matching cvecs and thus are likely to be equivalent.

Thanks to run_rewrites, no candidate in� should be derivable from '. However,� is often still large

and contains many redundant or invalid candidate rules.

Finally, Ruler’s choose_eqs procedure picks a valid subset of � to add to ', ideally �nding the

smallest extension which can establish all equivalences implied by ' ∪� . Ruler tests candidate

rules for validity using a domain-speci�c is_valid function. This process is repeated until there are

no more equivalences to learn between terms in ) , at which point Ruler begins another iteration.

6.4.2 Choosing Rules

After �nding a set of candidate rules � , Ruler selects a valid subset of rules from � to add to the

rule set ' using the choose_eqs procedure (Figure 6.8, line 14). As long as choose_eqs returns a valid,

non-empty subset of � , Ruler’s inner loop will terminate: the number of e-classes with matching

cvecs (i.e., the subset of ) used to compute �) decreases in each iteration since ' is repeatedly

extended with rules that will cause new merges in run_rewrites. Ideally, choose_eqs quickly �nds a

minimal extension of ' that enables deriving all equivalences implied by ' ∪�′ where �′ is the

valid subset of � .

The candidate rules in � are not derivable by ', but many of the candidate rules may be able

to derive each other, especially in the context of '. For example, the following candidate set is

composed of three rules from the boolean domain, and any two can derive the third:

(^ x x) = false (& x false) = false (& x false) = (^ x x)

An implementation of choose_eqs that only returns a single rule 2 ∈ � avoids this issue, since

adding 2 to ' prevents those rules derivable by ' ∪ {2} from being candidates in the next iteration

of the inner loop. However, a single-rule implementation will be slow to learn rules, since it can
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1 # ' is the accepted ruleset so far, � is the candidate ruleset.
2 # Ruler’s implementation of choose_eqs is based on a more flexible choose_eqs_n.
3 def choose_eqs(', �, = = ∞):
4 for step ∈ [100, 10, 1]:
5 if step ≤ =:
6 � = choose_eqs_n(', �, =, step)
7 return �

8
9 # = is the number of rules to choose from � , and step is a granularity parameter.

10 # A larger step size allows you to eliminate redundant rules faster.
11 def choose_eqs_n(', �, =, step):
12 # let  be the list of "keepers" which we will return
13  = []
14 while � ≠ ∅:
15 # pick the best step candidate rules from � according to a heuristic
16 # that approximates rule "generality", including subsumption.
17 �best, � = select(step, �)
18
19 # add the valid ones to  
20  =  ∪ {2 | 2 ∈ �best . is_valid(2)}
21
22 # remember all the invalid candidates in a global variable bad;
23 # Ruler uses this to prevent known−invalid candidates from entering � again (not shown)
24 bad = bad ∪ {2 | 2 ∈ �best . ¬is_valid(2)}
25
26 # stop if we have enough rules
27 if | | ≥ =:
28 return  [0..=]
29
30 # try to prove terms remaining in � equivalent using rules from ' ∪  
31 � = shrink(' ∪  , �)
32 return  

33
34 def shrink(', �):
35 � = empty_egraph()
36 for (; → A ) ∈ �:
37 � = add_term(�, ;)
38 � = add_term(�, A)
39 � = run_rewrites(�, ')
40 # return the extracted versions of rules from � , leaving out anything that was proven equivalent
41 return {extract(�, ;) → extract(�, A ) | (; → A ) ∈ �. ¬equiv(�, ;, A )}

Figure 6.9: Ruler’s implementation of choose_eqs, which aims to minimize the candidate set � by
eliminating subsets that the remainder can derive.
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only learn one at a time (Table 6.3 of our evaluation shows there are sometimes thousands of

rules to learn). Additionally, such an implementation has to decide which rule to select, ideally

picking the “strongest” rules �rst. For example, if 0, 1 ∈ � and ' ∪ {0} can derive 1 but ' ∪ {1}

can not derive 0, then selecting 1 before 0 would be a mistake, causing the algorithm to incur an

additional loop.

Ruler’s implementation of choose_eqs, shown in Figure 6.9, is parameterized by a value = with

default of ∞. At = = 1, choose_eqs simply returns a single valid candidate from � . For higher =,

choose_eqs attempts to return a list of up to = valid rules all at once. This can speed up Ruler by

requiring fewer trips around its inner loop, but risks returning many rules that can derive each

other. To mitigate this, choose_eqs tries to not choose rules that can derive each other. In its main

loop (line 14), choose_eqs uses the select function to pick the step best rules from � according to a

syntactic heuristic.4 Ruler then validates the selected rules and adds them to a set  of “keeper”

rules which it will ultimately return. It then employs the shrink procedure (line 34) to eliminate

candidates from � that can be derived be ' ∪  . This works similarly to run_rewrites in the Ruler

algorithm, but shrink works over the remaining candidate set � instead of the rule set '.

Ruler’s choose_eqs invokes the inner choose_eqs_n procedure with increasing small step sizes

(step is de�ned on line 4). Larger step sizes allow shrink to quickly “trim down” � when it contains

many candidates. However, a large step also means that choose_eqs may admit step rules into  at

once, some of which may be able to prove each other. Decreasing the step size to 1 eliminates this

issue.

4Ruler’s syntactic heuristic prefers candidates with the following characteristics (lexicographically): more distinct
variables, fewer constants, shorter larger side (between the two terms forming the candidate), shorter smaller side,
and fewer distinct operators.
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6.4.3 Comparison with CVC4

To evaluate Ruler, we compared it with prior work that synthesizes rewrites using the CVC4

solver [NRB+19]. Both Ruler and the CVC4 synthesizer are written in systems programming

languages (Rust and C++, respectively), and both take similar approach to synthesizing rewrite

rules: enumerate terms, �nd valid candidates, select rules and repeat.

We compared Ruler against CVC4 for booleans, bitvector-4, and bitvector-32. Both Ruler and

CVC4 are parameterized by the domain (bool, bv4, or bv32), the number of distinct variables in

the grammar, and the size of the synthesized term.5 All benchmarks were single-threaded and

run on an AMD 3900X 3.6GHz processor with 32GB of RAM. Both Ruler and CVC4 were given 3

variables and no constants to start the enumeration.

A bigger ruleset is not necessarily a better ruleset. We designed Ruler to minimize ruleset

size while not compromising on its capability to prove equalities. We de�ne a metric called the

deriving ratio to compare two rulesets. Ruleset � has deriving ratio ? with respect to ruleset � if

set � can derive a fraction ? of the rules in � (� � 1 means rule set � can prove rule 1):

? = |�� |/|� | where �� = {1 | 1 ∈ �. � � 1}

If � and � have deriving ratio of 1 with respect to each other, then they can each derive all of the

other’s rules.

We use egg’s equality saturation procedure to test derivability. To test whether � � 1 (where

1 = 1; → 1A ) we add 1; and 1A to an empty e-graph, run equality saturation using �, and check to

see if the e-classes of 1; and 1A merged. We run egg with 5 iterations of equality saturation. Since

this style of proof is bidirectional (egg is trying to rewrite both sides at the same time), derivations

5Size is measured in number of connectives, e.g., 0 has 0, (0 + 1) has 1, and (0 + (1 + 2)) has 2. In CVC4, this is set
with the –sygus-abort-size �ag.
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Parameters Ruler CVC4 Ruler / CVC4
Domain # Conn Time (s) # Rules Drv Time (s) # Rules Drv Time Rules
bool 2 0.01 20 1 0.13 53 1 0.06 0.38
bool 3 0.06 28 1 0.82 293 1 0.07 0.10
bv4 2 0.14 49 1 4.47 135 0.98 0.03 0.36
bv4 3 4.30 272 1 372.26 1978 1 0.01 0.14
bv32 2 13.00 46 0.97 18.53 126 0.93 0.70 0.37
bv32 3 630.09 188 0.98 1199.53 1782 0.91 0.53 0.11

0.04 0.17
Harmonic Mean

Table 6.3: Ruler tends to synthesize smaller, more powerful rulesets in less time than CVC4. The
table shows synthesis results across domains, and number of variables in the grammar, and
maximum term size (in number of connectives, “# Conn”). The domains are booleans, bitvector-4,
and bitvector-32. For verification, Ruler uses model checking for booleans and bitvector-4 and Z3
for bitvector-32. The “Drv” column shows the fraction that tool’s synthesized ruleset can derive
of the other’s ruleset; for example, the final row indicates that Ruler’s 188 rules derived 98% of
CVC4’s 1,782 rules, and CVC’s rules derived 91% of Ruler’s. The final two columns show the
ratios of synthesis times and ruleset sizes between the two tools.

of 1; = 1A can be as long as 10 rules from �.

Table 6.3 shows the results of our comparison with CVC4’s rewrite rule synthesis. On average

(harmonic mean), Ruler produces 5.8× smaller rulesets 25× faster than CVC4. Ruler and CVC4’s

results can derive each most of other. On the harder benchmarks (in terms of synthesis times),

Ruler’s results have a higher derivability ratio; they can prove more of CVC4 rules than vice-versa.

6.4.4 Synthesizing Herbie Rewrites

We also demonstrate that Ruler-generated rules can replace and augment those generated by

experts by doing exactly that for the Herbie tool [PSSWT15] (described in Section 6.2).

Experimental Setup We implemented rational numbers in Ruler, synthesized rewrite rules

over rational arithmetic, and then ran Herbie with the resulting ruleset.
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The Herbie benchmark suite has 51 stable benchmarks that contain only rational operators (as

opposed to things like sin and cos). We ran Herbie on these benchmarks under four di�erent

con�gurations:

• None: remove all the rational rewrite rules from Herbie’s simpli�cation phase. Rational

rules are those which consist only of rational operators and no others. Note that all other

components of Herbie are left intact, including rules over rational operators combined with

other operators, and rules entirely over other operators. None is the baseline.

• Herbie: no changes to Herbie, simply run it on the 51 benchmarks.

• Ruler: replace Herbie’s rational rules with output of Ruler.

• Both: run Herbie with both Ruler’s rational rules and the original Herbie rational rules.

We used Ruler to synthesize rational rules of depth 2 with 3 variables.6 Ruler learned 50 rules

in 18 seconds, all of which were proven sound with an SMT post-pass. Four rules were expansive

— i.e., rules like (0 → (0 × 1)) whose LHS is only a variable. We removed these expansive rules

from the ruleset as per the recommendation of the Herbie developers.

Discussion The Herbie simpli�er uses equality saturation to �nd smaller, equivalent programs.

The simpli�er itself does not directly improve accuracy; rather, it generates more candidates

that are then used in the other accuracy improving components of Herbie. While ideally, Herbie

would return a more accurate and smaller output, Herbie’s ultimate goal is to �nd more accurate

expressions, even if it sacri�ces AST size. Herbie’s original ruleset has been developed over the

past 6 years by numerical methods experts to e�ectively accomplish this goal. Any change to

these rules must therefore ensure that it does not make Herbie’s result less accurate.
6For rationals, the add_terms implementation enumerates terms by depth rather than number connectives, since

that matches the structure of Herbie’s existing rules.
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Figure 6.10: Comparing Herbie results between four configurations. Each boxplot represents the
results from 30 seeds, where each data point is obtained by summing the value (average error,
AST size, time) over all 51 benchmarks. The columns dictate what rational rules Herbie has access
to: either none, its default rules, only Ruler’s rules, or both. Herbie’s rational rules reduce AST
size and speed up simplification without reducing accuracy, and Ruler’s rules perform similarly
(with or without Herbie’s rules).
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Figure 6.10 shows the results of running Herbie with rules synthesized by Ruler. Each box-plot

corresponds to one of the four con�gurations. The baseline (None) and Herbie in Figure 6.10’s

accuracy and AST size plots highlight the signi�cance of rational rewrites in Herbie — these

expert-written rules reduce AST size without reducing accuracy. The plots for Ruler show that

running Herbie with only Ruler’s rational rules has almost the same e�ect on accuracy and AST

size as Herbie’s original, expert written ruleset. The plot for Both shows that running Herbie

together with Ruler’s rules further reduces AST size, still without a�ecting accuracy. The timing

plots show that adding Ruler’s rules to Herbie does not make it slower. The baseline timing

is slower than the rest because removing all rational simpli�cation rules causes Herbie’s other

components take much longer to �nd the same results.

In summary, Ruler’s rational rewrite rules can be easily integrated into Herbie, and they

perform as well as expert-written rules without incurring any additional overhead.

Fixing a Herbie Bug Ruler found the following two rules that helped the Herbie team address

a GitHub issue [Her21]: ( |0 × 1 | → |0 | × |1 |), and ( |0 × 0 | → 0 × 0). In many cases, Herbie may

generate large, complex outputs without improving accuracy, which makes the program unreadable

and hard to debug. This is often due to lack of appropriate rules for expression simpli�cation.

The issue raised by a user ([Her21]) was in fact due to the missing rule ( |G | × |G | → G × G). The

two rules above, can together, accomplish the e�ect of this rule, thereby solving the issue. We

submitted these two rules to the Herbie developers and they added them to their ruleset.



Chapter 7

Conclusion

To conclude this thesis, we should return to our original goal of supporting the thesis statement

stated in Chapter 1:

E-graphs and equality saturation are compelling techniques for program representation

and manipulation that should now be considered for programming tools across many

domains.

There are a few important parts of this statement, and teasing them apart may help us �gure out

if we have done what we set out to do.

First, we start out with “e-graphs and equality saturation are compelling techniques [. . . ]”.

This introductory phrase deserves to stand alone. Both the core technique discussed in this thesis

and the data structure that powers it are exciting, well-developed prior work. My hope is that the

document as a whole—and the background in Chapter 2 in particular—get this point across to

the reader. In the course of advancing the state-of-the-art in these areas, it is necessary to focus

on their shortcomings, but hopefully this phrase expresses how just how tall these shoulders are.

Had I not been excited by these works, this thesis would not exist.

83



84 Chapter 7. Conclusion

Second, we have “e-graphs and equality saturation [. . . ] should now be considered [. . . ]”. This

is not to say that they are not without merit on their own, but rather that I hope the advances

introduced in this thesis help raise the pro�le of equality saturation as a compelling technique.

Chapters 3 and 4 present new approaches that makes equality saturation faster and more �exible,

alleviating two key concerns with that a prospective user may have. Chapter 5 introduces egg, the

tool that implements all of this and make equality saturation easier to use than ever before. Put

together, I believe these contributions make now the time to look into and use equality saturation.

Finally, we end by stating that equality saturation should be applicable to “[. . . ] programming

tools across many domains.” My goal for this thesis is to turn many “why” questions about equality

saturation into “why not” questions. The case studies in Chapter 6 hopefully o�er empirical

evidence that equality saturation can be useful (and even critical) in unexpected ways. If the

same technique can shrink 3D CAD programs (Section 6.1), make �oating point more accurate

(Section 6.2), optimize deep learning compute graphs (Section 6.3), and synthesize the very rules

that it needs to work (Section 6.4), then why wouldn’t it work for your problem in your domain?

Even outside of those case studies, egg is powering or inspiring many additional projects, only

some of which are published at the time of writing this [WHL+20, Che21, VNL+21].

People used and worked on equality saturation before I began work on this thesis. In fact, I

�rst learned about it by talking to some of those people (the Herbie developers, Section 6.2). My

�rst reaction to equality saturation was that of a skeptic (“it’s just union�nd”), and I began work

on egg out of hubris to show that it was trivial to implement. Predictably, I was quickly humbled,

but eventually egg became a useful tool. After some more learning, I moved into the fanatic phase:

“why isn’t everyone doing this?” Through the course of pushing a round egg through several

square holes, I would like to think that I have adopted a more pragmatic approach,1 informed by

the strengths and weaknesses of the technique.

1Friends and colleagues, however, will be excused for still thinking me a fanatic.
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This work in this thesis puts a dent in those weaknesses and introduces some new strengths.

With these advances, and with egg packaging them all up, I hope that others �nd that equality

saturation is a viable, useful, and even fun technique with a more straightforward journey than

my own.

7.1 Future Work

Going forward, I hope and expect that equality saturation will take a larger role is all kinds of

compilers, synthesizers, and optimizers. But further work is needed to get there. While egg can

already be used to build a state-of-the-art optimizer fast enough to use in a compiler [YPW+21],

this only applies for domains with algebraic, context-free interpretations of their expressions. To

make equality saturation practical in more complex domains (like general purpose programming

languages), new conceptual advances are required.

Prior work [TSTL09] introduced Program Expression Graphs (PEGs) to represent programs with

mutation and loops inside e-graphs, but not source-level programs or functional IRs. These latter

two are tricky for e-graphs because binding means that equivalence is contextual: two variables G

in the program might refer to di�erent binding sites. E-class analyses could be combined with

recent work [MEL+21] that proposes a modular way to describe binding structure.

Complex domains will require larger search spaces, further pushing the performance require-

ments for e-graphs and equality saturation. This work introduced a new, more e�cient algorithm

for congruence closure in e-graphs; the remaining bottleneck is e-matching. egg uses the current

state-of-the-art [dMB07] backtracking algorithm that wastes work when search for patterns like

(G ∗~) + (G ∗ I) with multiple occurrences of the same variables. A smarter e-matching algorithm

could take advantage of these equality constraints, similar to how joins in a relational database do.

Finally, equality saturation’s performance and correctness both hinge on the rewrites provided
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by the users. If those rewrites are incomplete or unsound, equality saturation may miss optimiza-

tions or yield incorrect results. Automatically generating these rules could make using equality

saturation even easier for prospective users.
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